
Lift-and-Project cuts: an efficient
solution method for

mixed-integer programs

Sebastian Ceria

Graduate School of Business and

Computational Optimization Research Center

http://www.columbia.edu/~sc244

Columbia University

Mixed Integer Programs

• A Mixed 0-1 Program

{ }

min

, , , ,

cx

Ax b

x

x i pi

≥
≥
∈ =

0

0 1 1 K

• its LP Relaxation

min
~ ~

~ ~

cx

Ax b

Ax b

≥
≥where includes all bounds

• with optimal solution x

The Lift-and-Project method

• Developed jointly with Egon Balas and Gerard Cornuejols
– “A lift-and-project method for mixed 0-1 programs”, Math Prog

– “Mixed-integer programming with Lift-and-Project in a branch-
and-cut framework”, Manag. Science

• For the last two years joint work with Gabor Pataki

• Recent computational experiments with branch-and-cut
and multiple cuts with Pasquale Avella and Fabrizio Rossi.

• Based on the work of Balas on Disjunctive Programming

• Related to the work of Lovasz and Schijver (Matrix cuts),
Sherali and Adams, Merhotra and Stubbs, Hooker and
Osorio, Merhotra and Owen.

Lift-and-Project cuts

• Generate cutting planes for any mixed 0-1 program:

– Disjunction
~ ~ ~ ~
Ax b

x

Ax b

x
x

i i
i

≥
=







 ∨

≥
=









 ∉

0 1
 {0,1}

– Description of

P conv
Ax b

x

Ax b

x
i

i i

=
≥
=







 ∪

≥
=

















~ ~ ~ ~

0 1

– Choose a set of inequalities valid for Pi that cut off x

The LP relaxation

The optimal “fractional” solution

x

The disjunction

1

~~

0

~~

=
≥∨

=
≥

ii x

bxA

x

bxA

One side of the
disjunction

0=ix
x

1=ix

The other side of
the disjunction

x

The union of the disjunctive sets

x

The convex-hull of the
union of the disjunctive sets

x

One facet of the convex-hull
but it is also a cut!

x

x

The new “feasible” solution!

How do we get disjunctive cuts in practice?

• A cut α x > β is valid for Pi if and only if (α, β)∈ Pi(K), i.e.
if it satisfies (Balas, 1979)

α

β

= +

≤ +

u A v e

u b v

i
1 1

1 10

~

~
α

β

= +

≤ +

u A v e

u b v

i
2 2

2 2

~

~

u u1 2 0, ≥

• Hence, we have a linear description of the inequalities
valid for Pi.

• A theorem of Balas allows us to represent the convex-hull
on a higher dimensional space. It’s projection is used to
generate the cuts.

1

~~

0

~~

2
0

1
0

21

2
0

2

2
0

2

1

1
0

1

=+

=+

=

≥

=

≥

xx

xxx

xx

xbxA

x

xbxA

ii

The Disjunctive Programming Approach

Normalization constraints, objective function
and geometric interpretation

• We generate a cutting plane by:

i) Requiring that inequality be valid, i.e. (α, β)∈ Pi(K);

ii) Requiring that it cuts-off the current fractional point

• This linear program is unbounded (the inequality can be
scaled arbitrarily, and if there is a cut, the objective can be
made +∞)

max β α− x

α

β

= +

≤ +

u A v e

u b v

i
1 1

1 10

~

~
α

β

= +

≤ +

u A v e

u b v

i
2 2

2 2

~

~

u u1 2 0, ≥

Duality and geometric interpretation

• The “primal” problem is infeasible...

1

~

~~

0

~~

2
0

1
0

21

2
0

2

2
0

2

1

1
0

1

=+
=+

=

≥

=

≥

xx

xxx

xx

xbxA

x

xbxA

jj

is not in the convex-hull of the
union of the sets obtained by fixing the variable to 0 and 1

x

x

Normalization constraints

• We add a normalization constraint for the cut generation
linear program, which is equivalent to relaxing the “primal
problem”. We limit the norm of the cut, and relax the fact
that the point needs to be in the convex-hull.

1

~~

0

~~

2
0

1
0

*21

2
0

2

2
0

2

1

1
0

1

=+
=+

=

≥

=

≥

xx

xxx

xx

xbxA

x

xbxA

jj

max β α− x

α

β

= +

≤ +

u A v e

u b v

i
1 1

1 10

~

~
α

β

= +

≤ +

u A v e

u b v

i
2 2

2 2

~

~

u u1 2 0, ≥

1≤α

*

* ~ min xx −

Geometric interpretation

x

x*

Normalization constraints (cont)

• We normalize by restricting the multipliers in the cut
generation linear program, which is equivalent to relaxing
the original constraints in the “primal problem”:

1

~

~~

0

~~

2
0

1
0

21

2
0

2

2
0

2

1

1
0

1

=+
=+

=

≥+

=

≥+

xx

xxx

xx

xbtexA

x

xbtexA

jj

t minmax β α− x

α

β

= +

≤ +

u A v e

u b v

i
1 1

1 10

~

~
α

β

= +

≤ +

u A v e

u b v

i
2 2

2 2

~

~

u u1 2 0, ≥
u u v v ki

i
i

i

1 2 1 2∑ ∑+ + + ≤

Geometrical interpretation

x

t

• A “look” at the matrix

u 1 v1 u 2 v2 α β
A T I -I ei -I 0

bT -1T -1 = 0
A T I -I ei -I 0

bT -1T 1 -1 0

Cut generation LP

• Dimension of CLP:

– rows: 2n+2

– columns: 2m+ 5n + 3

Solving the cut generation LP efficiently: Lifting

• Working on a subspace of the “fractional” variables
(variables which are not at their bounds).

• It’s a theorem about the solution of these linear programs,
in order to solve the linear program on the full space of
variables (more constraints and variables) we solve the
problem in the subspace, and generate a solution to the full
space by using a simple formula.

• In practice it reduces the computation time significantly
(typically the number of variables between bounds is much
smaller than the total number of variables.

• It also allows for using the cuts in branch-and-cut

Solving the cut generation LP efficiently:
Constraint selection

• We can select to work with a subset of the original
constraints (for example only the tight constraints).

• But if we only take the tight constraints, then we get the
intersection cut! (Balas, Glover 70’s).

• Since the intersection cut is readily available from the
tableau, we could use the intersection cut as a starting basis
for solving the cut generation linear program.

• In practice this combination reduces the computation
time significantly, although it may yield weaker cuts.

u 1 v1 u 2 v2 α β
A T I -I ei -I

bT -1T 1 -1
A T I -I ei -I

bT -1 T -1

• Rows and columns deleted by (original) variable selection

• Columns deleted by constraint selection

How variable and constraint selection affect
the cut generation problem

Solving the cut generation LP efficiently:
Multiple cut generation

• First idea: let (α*, β*, u*, v*) be the first optimal solution
of CLP

– Choose a subset S of multipliers u*

– Add to CLP the constraint u(S) = 0

– Reoptimize CLP

• A slight variation, do some pivoting so as to get alternative
solutions to the cut generation linear program

Solving the cut generation LP efficiently:
Multiple cut generation (cont)

• Second idea:(strong cutting)
– Generate other points x1 ,…, xk and also cut them off with the same

cut-generation LP.

– The fractional point only affects the objective function of the cut
generation LP, so, in a way, it is like getting alternative solutions to
the LP (these solutions may not cut-off the solution to the linear
programming relaxation)

– The other points are generated by doing some pivots in the original
problem (pivots that give solutions that are close to optimal)

– One could also think of generating an objective which is a convex
combination of these (thus separating a convex combination of
x1 ,…, xk)

More extensive computational results

• The test-bed

– “All” problems from MIPLIB 3.0, excluding the ones that
solve in less than 100 nodes with a good commercial solver
using the consistently best setting (CPLEX 5.0, best bound,
strong branching).

– From here we chose the ones that take more than half an
hour on a Sun Ultra 167 MHZ. There are 23 problems in
this set. For these problems the strong branching setting
works better than the default setting.

Cut and branch

• Generate disjunctive cuts from 0-1 disjunctions in rounds (a
set of cuts generated for different disjunctions without
resolving the relaxation), add them to the formulation. After
every round, drop the non-tight cuts. This makes the LP-
relaxation tighter, and the LP harder to solve.

• Run branch-and-bound (CPLEX 5.0, MIP solver SB-BB and
XPRESS-MP, default parameters) on the strengthened
formulation, and compare it with the run on the original
formulation.

Cut and branch with 5 rounds of cuts

Problem C&B
Time

C&B
Nodes

CPLEX 5.0
Time

CPLEX 5.0
Nodes

10 teams 5747 1034 5404 2265
Gesa2 1721 6464 9919 86522

gesa2_o 668 4739 12495 111264
Modglob 435 5623 +++ +++

p6000 805 1264 1115 2911
pp08a 178 1470 +++ +++

pp08aCUTS 134 607 50791 1517658
qiu 27691 15239 35290 27458

vpm2 974 18267 8138 481972

The cuts work but 5 rounds is too much

Problem C&B
Time

C&B
Nodes

CPLEX 5.0
Time

CPLEX 5.0
Nodes

air04 5084 120 2401 146
air05 4099 213 1728 326

mod011 +++ +++ 22344 18935

Rerunning these problems with only 2 rounds

Problem C&B
Time

C&B
Nodes

CPLEX 5.0
Time

CPLEX 5.0
Nodes

Air04 1536 110 2401 146
Air05 1411 141 1728 326

Mod011 63481 24090 22344 18935

The rest of the problems

Problem C&B
Time

C&B
Nodes

CPLEX 5.0
Time

CPLEX 5.0
Nodes

arki001 13642 12536 6994 21814
misc07 4133 14880 2950 15378

pk1 6960 150243 3903 130413
rout 40902 190531 19467 133075

Some comparisons

Problem C&B(CP)
Time

C&B (CP)
Nodes

C&B (XP)
Time

C&B (XP)
Nodes

10 teams 5747 1034 1120 5983
gesa2 1721 6464 3248 145352

gesa2_o 668 4739 2024 95349
Misc07 4133 14880 997 32284

modglob 435 5623 2439 235106
p6000 805 1264 2123 12924
pp08a 178 1470 256 784

pp08aCUTS 134 607 116 9073
qiu 27691 15239 7016 47951

vpm2 974 16267 1413 136053

• Problems not solved with any of the two methods:

– noswot, set1ch, harp2, seymour, dano3mip,

danoint, fastxxx.

• Performance of our cuts on these problems:

– Poor: noswot, harp2 (high symmetry) dano3mip,
danoint (already contains many cuts)

– Fairly good : set1ch, seymour.

• Not tried

– fastxxx

Conclusions

• A robust mixed-integer programming solver that uses general
disjunctive cutting planes.

• The cuts can be used within branch-and-cut with very good
performance.

• The computational experiments indicate that it is very
important to be able to generate good “sets” of cuts, rather
than individual cuts.

• How do we use disjunctions more efficiently?

• Which are good disjunctions?

• Which are bad ones?

Branch & cut MISC07

Alternative Nodes Time
2 22241 3543
3 21415 3286
4 20584 3020
5 16946 2584
6 15338 2610

3 rounds at the root node
Cuts every 10 nodes
1 round for nodes different from the root
LP Solver: XPRESS-MP 10

Cut and branch takes 35426 nodes and 4028 seconds
with two alternative solutions

Cut and branch pp08a

Alternative 2 rounds 5 rounds Nodes Time
1 6010 6835 25067 850
2 6010 6837 18111 640
3 6012 6869 16763 650
4 6078 6898 14324 630
5 6079 6901 7030 580
6 6165 6985 5020 540
7 6167 6985 4982 605

