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Mixed Integer Programs

A Mixed O0-1 Program
MIiNcx
AX=Db
X=0
x 0{01,i=1...,p
e its LP Relaxation
mincx
Ax=b
where Ax = b includes all bounds

o with optimal solution X



he Lift-and-Project method

Developed jointly with Egon Balas and Gerard Cornuejols
— “A lift-and-project method for mixed 0-1 programs”, Math Prog

— “Mixed-integer programming with Lift-and-Project in a branch-
and-cut framework”, Manag. Science

For the last two years joint work with Gabor Pataki

Recent computational experiments with branch-and-cut
and multiple cuts with Pasquale Avella and Fabrizio Rossi.

Based on the work of Balas on Disjunctive Programming

Related to the work of Lovasz and Schijver (Matrix cuts),
Sherali and Adams, Merhotra and Stubbs, Hooker and
Osorio, Merhotra and Owen.



Lift-and-Project cuts

o Generateutting planes for any mixed 0-1 program:

— Digunction
OAx=b O
N 0 x 0{0,1}
Lx =0 []

— Descriptionof

Ax=>b 0 OAx= b
P =convl[] H{EEN 1]
[Dxi =0U DXi :l|:|:I

— Choose a set of inequalities valid Rithatcut off x



The LP relaxation



The optimal “fractional” solution
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One side of the
digunction




The other side of
the digunction




The union of the digunctive sets
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The convex-hull of the
union of the digunctive sets
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One facet of the convex-hull
but 1t 1Isalso a cut!
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The new “feasible” solution!



How do we get digunctive cuts in practice?

« Acutax> pgisvalid forP; if and only if (a, S)U P,(K), i.e.
If it satisfies (Balas, 1979)

4 N
a=utA+vle a=u’A+v%
Bsub +vio  Bsuh +v?

ul,u220

\_ /

 Hence, we have lanear description of the inequalities
valid for P;.



The Digunctive Programming Approach

* A theorem of Balas allows us to represent the convex-hull

on a higher dimensional space. It’s projection is used to
generate the cuts.



Normalization constraints, objective function
and geometric interpretation

 Wegenerata cutting plane by:

1) Requiring that inequalitpe valid, i.e. (a, £)U P,(K);
I1) Requiring that ituts-off the current fractional point
max 5 — ax
a=utA+vle a=u*A+ve
B<ub +vo B<u®b +v?
ut,u?=0
« This linear program isnboundedthe inequality can be

scaled arbitrarily, and if there is a cut, the objective can be
made +0)



Duality and geometric interpretation

e The “primal” problem isnfeasible...

!

Ax' =bx; Ax° =bx}
1 2 — 2
X; =0 X; = X
X'+ X2 =X <
1 2 _—
X;+ X5 =1



N

X 1snot in the convex-hull of the
union of the sets obtained by fixing the variableto O and 1



Normalization constraints

« We add anormalization constraint for the cut generation
linear program, which is equivalentitelaxing the “primal
problem”. Welimit the norm of the cut, andelax the fact
that the point needs to be in the convex-hull.

max  — ax mion* - >~<H
a=ulA+vle a=u?A+v’e Ax'zbxt AX? 2bx’
psub+vio  Bsub+v? X =0 X=X

uhu? >0 X + x5 =X

o] <1 X+ X =1



Geometric interpretation




Normalization constraints (cont)

 We normalize byestricting the multipliersin the cut
generation linear program, which is equivalentdi@xing
theoriginal constraintsin the “primal problem™

max [ - ax mint
~ ~ Aol Ll A2 2
a:u1A+V1Q a:u2A+V2q AX +teZbX0 AX +teZbX0
~ ~ 1 2 — 2
Bsub+vio  B<u’b +V? X; =0 Xj =X
1 2
ul,uzzo X"+ X" =X
1 2
sul+yu?+vi+vZ <k X+ X =1



Geometrical interpretation




Cut generation LP

e A “look” at the matrix

ut v u? ve o a f3
N -] 0
b' 17 1110
AV |- e -l 0
b' 171 11 |0

e Dimension of CLP:
rows. H+2
columns: &2+ 5n+ 3




Solving the cut generation LP efficiently: Lifting

« Working on asubspace of the “fractional” variables
(variables which are not at their bounds).

e It’s a theorem about thelution of these linear programs,
In order to solve the linear program on the full space of
variables (more constraints and variables) we solve the
problem in the subspace, and generate a solution to the full
space by using a simple formula.

e |In practice itreduces the computation time significantly
(typically the number of variables between bounds is much
smaller than the total number of variables.

e |t alsoallowsfor using the cutsin branch-and-cut



Solving the cut generation LP efficiently:
Constraint selection

We can select to work withsabset of the original
constraints (for example only the tight constraints).

But if we only take the tight constraints, then we get the
Intersection cut! (Balas, Glover 70’s).

Since the intersection cut is readily available from the
tableau, we could use the intersection cut as a starting basis
for solving the cut generation linear program.

In practice this combinatioreduces the computation
timesignificantly, although it may yield weaker cuts.



How variable and constraint selection affect
the cut generation problem

J* A ? v la S
NI Y I = -
h)T _1T 1 _1
A' -l el |-
' 17 -1

 Rows and columns deleted by (original) variable selection
e Columns deleted by constraint selection



Solving the cut generation LP efficiently:
Multiple cut generation

o Firstidea: let (', £, u’, v) be the first optimal solution
of CLP

— Choose a subset S of multipliers
— Add to CLP the constrain(S) =0
— Reoptimize CLP

* A slight variation, do some pivoting so as to get alternative
solutions to the cut generation linear program



Solving the cut generation LP efficiently:
Multiple cut generation (cont)

e Second idea:(strong cutting)

— Generate other points,..., x and also cut them off with the same
cut-generation LP.

— The fractional point only affects the objective function of the cut
generation LP, so, in a way, it is like getting alternative solutions to
the LP (these solutions may not cut-off the solution to the linear
programming relaxation)

— The other points are generated by doing some pivots in the original
problem (pivots that give solutions that are close to optimal)

— One could also think of generating an objective which is a convex
combination of these (thus separating a convex combination of

Xy geees X )



More extensive computational results

e The test-bed

— “All” problems from MIPLIB 3.0, excluding the ones that
solve in less than 100 nodes with a good commercial solver
using the consistently best setting (CPLEX 5.0, best bound,
strong branching).

— From here we chose the ones that take more than half an
hour on a Sun Ultra 167 MHZ. There are 23 problems in
this set. For these problems the strong branching setting
works better than the default setting.



Cut and branch

« Generataligunctive cuts from 0-1 disjunctions imunds (a
set of cuts generated for different disjunctions without
resolving the relaxation), add them to the formulation. After
every round, drop the non-tight cuts. This makes the LP-
relaxation tighter, and the LP harder to solve.

* Run branch-and-bound (CPLEX 5.0, MIP solver SB-BB and
XPRESS-MP, default parameters) on strengthened
formulation, and compare it with the run on the original
formulation.



Cut and branch with 5 rounds of cuts

Problem C_& B C&B |CPL _EX 5.0l CPLEX 5.0
Time | Nodes Time Nodes
10 teams 5747 1034 5404 2265
Gesa? 1721 6464 9919 86522
gesa2 o 668 4739 12495 111264
M odglob 435 5623 +++ +++
P6000 805 1264 1115 2911
ppO8a 1/8 1470 +++ +++
pp08aCUTS| 134 607 50791 1517658
giu 27691 | 15239 35290 27458
vpm?2 974 18267 8138 481972




he cuts work but 5 rounds is too much

Problem C_& B C&B |CPL _EX 50| CPLEX 5.0
Time | Nodes Time Nodes
airo4 5084 120 2401 146
air 05 4099 213 1728 326
mod011 +++ +++ 22344 18935




Rerunning these problems with only 2 rounds

Problem C_& B C&B |CPL _EX 50| CPLEX 5.0
Time | Nodes Time Nodes
Air04 1536 110 2401 146
Air05 1411 141 1728 326
Mod011 63481 | 24090 22344 18935




he rest of the problems

Problem C_& B C&B |CPL _EX 50| CPLEX 5.0
Time | Nodes Time Nodes
arkiool 13642 | 12536 6994 21814
miscO7 4133 14880 2950 15378
pkl 6960 | 150243 3903 130413
rout 40902 | 190531 19467 133075




Some comparisons

Problem C& I_3(CP) C&B (CP) | C& B (XP) | C&B (XP)

Time Nodes Time Nodes

10 teams 5747 1034 1120 5983
gesa?2 1721 6464 3248 145352
gesa2 o 668 4739 2024 05349
MiscO7 4133 14880 997 32284
modglob 435 5623 2439 235106
P6000 805 1264 2123 12924

pp08a 178 1470 256 784

pp08aCUTS 134 607 116 9073
giu 27691 15239 7016 47951
vpm?2 974 16267 1413 136053




* Problemsiot solved with any of the two methods:
— noswot, setlch, harp2, seymour, dano3mip,
danoint, fastxxx.
e Performance of our cuts on these problems:

— Poor noswot, harp2 (high symmetry) dano3mip,
danoint (already contains many cuts)

— Fairly good: setlch, seymour.
* Not tried
— fastxxx



Conclusions

A robust mixed-integer programming solver that uses general
disjunctive cutting planes.

The cuts can be used within branch-and-cut watly good
performance.

The computational experiments indicate that it is very
Important to be able to generafeod “sets” of cuts, rather
than individual cuts.

How do we use disjunctions more efficiently?
Which are good disjunctions?
Which are bad ones?



Branch & cut MI1SCO7

3 rounds at the root node

Cuts every 10 nodes

1 round for nodes different from the root
LP Solver: XPRESS-MP 10

Alternative Nodes Time
2 22241 3543
3 21415 3286
4 20584 3020
5 16946 2584
6 15338 2610

Cut and branch takes 35426 nodes and 4028 seconds
with two alternative solutions



Cut and branch pp08a

Alternative | 2rounds | 5rounds Nodes Time
1 6010 6835 25067 850
2 6010 6837 18111 640
3 6012 6869 16763 650
4 6078 6898 14324 630
5 6079 6901 7030 580
6 6165 6985 5020 540
7 6167 6985 4982 605




