
Understanding Route Redistribution
Franck Le

Carnegie Mellon University
franckle@cmu.edu

Geoffrey G. Xie
Naval Postgraduate School

xie@nps.edu

Hui Zhang
Carnegie Mellon University

hzhang@cs.cmu.edu

Abstract—Route redistribution (RR) has become an integral
part of IP network design as the result of a growing need
for disseminating certain routes across routing protocol bound-
aries. While RR is widely used and resembles BGP in several
nontrivial aspects, surprisingly, the safety of RR has not been
systematically studied by the networking community. This paper
presents the first analytical model for understanding the effect
of RR on network wide routing dynamics and evaluating the
safety of a specific RR configuration. We first illustrate how
easily inaccurate configurations of RR may cause severe routing
instabilities, including route oscillations and persistent routing
loops. At the same time, general observations regarding the root
causes of these instabilities are provided. We then introduce a
formal model based on the general observations to represent
and study the safety of route redistribution. Using the model, we
prove that given a RR configuration, determining whether the
redistributions result in a cycle is NP-hard. Given this complexity,
we present a sufficient condition, which can be checked in
polynomial time with the proposed analytical model, for ensuring
the safety of a RR configuration. Finally, the paper proposes
potential changes to the current RR protocol to guarantee safety.

I. INTRODUCTION

Recent studies show that some enterprise networks rival
carrier networks in terms of scale and complexity of routing
design [1]. One may even argue that because of a more
dynamic business environment fueled by acquisitions and
mergers, large enterprise networks may be more difficult to
control and manage than carrier networks. One source of this
difficulty stems from the fact that the routing structure of a
large enterprise network typically consists of multiple domains
or routing instances [1]. Routing instances form for many
reasons. Company acquisitions, departments administered by
different teams, and multi-vendor equipments may lead to
such situations [2]. Alternatively, network administrators may
intentionally create separate routing instances to filter routes,
limit reachability and enforce policies [3].

Routers within one routing instance typically run the same
routing protocol to fully share reachability information and
they by default do not exchange routing information with
routers in other routing instances. Consider the network de-
picted in Figure 1. It consists of two routing instances. Routers
in the RIP instance do not have visibility of the addresses and
subnet prefixes in the OSPF instance and vice versa. To allow
the exchange of routing information between different routing
instances, router vendors have introduced a feature called route
redistribution. Route redistribution (RR) is a configuration

1Minor revisions, February 9, 2008.
In Proceedings of ICNP’07, Beijing, China.

option local to a router. It designates the dissemination of
routing information from one protocol process to another
within the same router. For routers in the RIP instance to learn
the prefixes in the OSPF instance, a router (e.g., D or E) needs
to run both a process of RIP and a process of OSPF and inject
the OSPF routes into the RIP instance.

As such, router vendors introduced RR to address a need
from network operations. We recently looked at the configura-
tions of some large university campus networks and found that
RR is indeed widely used. However, contrary to traditional
routing protocols, there is no standard or RFC formally
defining the functionality of RR. Significant efforts are usually
associated with the design and analysis of a routing protocol to
ensure its correctness and stability but the specification of RR
did not receive as much attention. Consequently, RR is often
misconfigured leading to sub-optimal routing and even severe
instabilities such as route oscillations and persistent routing
loops.

The risks of route redistribution have been acknowledged
by router vendors and network operators, but there is currently
no general guideline to configure RR correctly. Solutions are
developed on an ad-hoc basis for specific situations [3] but
most existing solutions do not satisfy network design goals.
RR has two main objectives. The first one is to propagate
routing information between different routing instances for
connectivity purposes as described earlier. The second objec-
tive is route back up: in the event of a network failure (e.g.,
link B-C of Figure 1 being down), routing instances should
provide alternate forwarding paths to each other (e.g., router
C should still be able to reach router A through the C-E-F -
D-A path.) However, to avoid route oscillations and routing
loops, according to current vendor recommendation [2], a
route received from a routing instance must not be re-injected
back into that same instance. Such a strong restriction pre-
vents domain back-up. In addition, most of existing solutions
apply to scenarios with only two routing instances, but large
operational networks often include more than two routing
instances [1].

In short, RR has become an integral part of IP network
design but its stability seems sensitive to network failures and
configuration errors. To the best of the authors’ knowledge this
paper is the first to analyze route redistribution and attempt to
identify the origins of the observed instabilities. Our work is
based on two key insights. First, we observe that the way
RR effects the flow of routes is very similar to that of a
distance vector routing protocol, albeit with a larger scope

Router C

Router A

Router E

Router D Router G

Router FRouter B

Router H

RIP OSPF

Fig. 1. An example enterprise network that consists of two routing instances.
Without route redistribution, the routers in the RIP instance do not have
knowledge of the destinations in the OSPF instance, and vice-versa.

since the routes are passed between routing instances. Second,
the policy-based functionality of RR makes it resemble BGP
in several nontrivial ways.

The rest of the paper is organized as follows. Section II
provides a tutorial of the concepts related to the RR procedure.
Section III illustrates some of the instabilities that route
redistribution can cause. Section IV introduces a model to
abstract the dynamics of the RR procedure. The model helps
to identify the formation of route oscillations and persistent
routing loops as will be demonstrated in Section V. In Section
VI, we show that determining whether a configuration of
route redistribution can converge to a state containing a cycle
is NP-hard. This complexity has motivated us to develop a
sufficient condition for RR safety. The result is presented in
Section VI. Finally in Section VII, we propose a set of changes
to the RR procedure itself aimed at creating a protocol that is
inherently safe, i.e., free of instabilities even if misconfigured.

II. BACKGROUND

Although a router may run multiple routing protocols at the
same time, it forwards packets according to routes stored in
a protocol-agnostic table called Forwarding Information Base
(FIB). Routing instabilities such as oscillations and loops are
always the consequence of some routers installing some wrong
routes in their FIBs. As background information for the rest of
the paper, this section briefly explains how a router populates
its FIB and describes the role of route redistribution in that
procedure. Without loss of generality, all discussions are with
respect to a single destination prefix, denoted by P , unless
noted otherwise.

A. Route Selection
A router that runs multiple routing protocols actually in-

stantiates a separate routing process for each protocol. Each
instantiated routing process has its own Routing Information
Base (RIB) to store protocol-specific routing information.
These processes may offer routes to P at the same time and
the router then must select one of the routes to include in
the FIB. To add flexibility to the selection procedure, router
vendors have introduced a configurable integer parameter per-
routing process, called administrative distance [4], to facilitate
a logic for ranking a set of routing processes that supply

Router GRouter D

Routing
Process
RIB

Local
RIB
(e.g.,
Connec
−ted)

OSPF 27

Local
RIB
(e.g.,
Static)

Routing
Process
RIB

Routing
Process
RIB

Router’s FIB Router’s FIB

(OSPF 27) (OSPF 27)

Routing Instance 1 Routing Instance 2

(RIP)

RIP

Fig. 2. Router’s route selection procedure. Router D may need to perform
route selection among three routing processes while G may need to select
between two. D and G belong to the same OSPF routing instance.

routes to a same destination prefix. Upon creation, each routing
process is assigned a protocol-specific default administrative
distance. For example, the default administrative distance (AD)
is 110 for OSPF and 120 for RIP. The administrator may
override the default AD of a protocol, according to local policy
and on a per-router per-prefix basis, as part of the protocol
configuration. The administrative distance values are local to
a router and are not propagated in any signaling message.

Among the routing processes announcing a route to P , the
one with the lowest administrative distance will be selected.
We will refer to it as the selected routing process for P and the
route subsequently installed in the FIB the active route for P .
If multiple processes present the same lowest administrative
distance, the router picks one of them using a nondeterministic
and vendor-specific algorithm. Fig. 2 illustrates the adminis-
trative distance based route selection procedure on two routers
(D and G in the enterprise network shown in Fig. 1). Router
D has three concurrent routing processes: OSPF, RIP, and
the built-in process for handling local static routes or direct
connected subnets. When the OSPF and RIP processes present
independent routes to P at the same time, the router will select
the route from the OSPF processs because of its lower AD
value (110 vs. 120).

B. Route Redistribution
A router running multiple routing processes does not by

default redistribute routes among these processes. Route redis-
tribution (RR) must be explicitly configured. The RR configu-
ration and operation can be complex. Contrary to most routing
protocols which optimize a metric, RR is driven by policies,
making it very similar to BGP. As in BGP, access control
lists can be applied and tags can be assigned to the different
prefixes. In Cisco, route-map allows network administrators
to filter the routes, prioritize the received announcements
(by assigning different AD values) and modify the attributes
of the redistributed routes. Figure 3(a) provides an example
of a Cisco configuration redistributing routes from a RIP
process into an OSPF one. The route-map statements filter the
route and modify the attributes of the redistributed routes. In
Juniper routers, RR is specified through routing policies (i.e.,
import and export statements). Figure 3(b), extracted from [5],
provides an example of a JUNOS configuration redistributing

2

router ospf 27

 set metric−type type−1
 match ip address 100

!
 distance ospf external 200

route−map rip−2−ospf
 redistribute rip metric 200 subnets

(a)

 from protocol rip;
 then {
 metric 5;
 accept;
 }
 }
}

ospf {
 export rip−2−ospf;
 }

(b)

policy−statement rip−2−ospf {

route−map rip−2−ospf permit 10

 set tag 22

Fig. 3. (a) Excerpt of a Cisco RR configuration for router D of the example
enterprise network. The “redistribute” command enables RR from the RIP
process into the OSPF process. A route-map is applied to enforce policies.
(b) Excerpt of a Juniper RR configuration for router E of the same network.

the routes from a RIP process into an OSPF one.
When configuring a route redistribution, a number of per-

route parameters are involved. A metric value is assigned
to each new route in the target routing process (i.e., the
process that receives the route). The metric can be manually
configured. If not specified, a default value is assigned to the
redistributed route. The value of the metric is important since
the target routing process may disseminate a redistributed route
to other routers within the same routing instance and when
that happens the value of the metric may influence the router
selection outcomes at these routers. Additional route attributes
can be specified depending on the target routing process. As an
example, in OSPF, a route can be injected either as a Type 1 or
Type 2 route. Each route type presents its own properties [6].
All these attributes affect the route selection (within a routing
instance) and when misconfigured can cause instabilities as
illustrated in the subsequent sections.

While RR is a complex, policy-driven vector protocol like
BGP, there is no RFC or other form of standards about it.
Vendor Web sites or manuals usually only provide guidelines
and sample configuration files. It took us many hours of
reading and experimentation to identify the following two
very basic operational characteristics of RR. First, a route is
redistributed only if it is active, i.e., present in the router’s FIB.
Consequently, RR is not a transitive operation. For example,
let’s consider a router running three routing processes X , Y
and Z. Suppose that redistributions from X to Y and from
Y to Z are configured. If initially no route to P exists in the
FIB and the router learns a route to P through X , the route
is redistributed into Y . However, the route will not be further
redistributed into Z from Y because Y is not the selected
process for P . Second, a router seems able to differentiate
locally redistributed routes from routes that routing processes
learn from their protocol operations. Routes redistributed from
the local FIB apparently will not be considered by the route
selection procedure. Continuing from the previous example,
suppose Y has a lower AD than X . The router will not switch
to designate Y as the selected process for P after the route
redistribution from X to Y . In other words, RR does not
impact local route selection. However, since it is possible (and
quite often) that a routing process disseminates redistributed
routes to other routers in the same routing instance, RR does

IGRP (100)
Instance 3
Routing

OSPF (110)
Instance 2
Routing

Instance 1
RIP (120)

Routing

Router B

Router C

Router A Router D

Router E

Workgroup Switch

Catalyst

Workgroup Switch

Catalyst

Workgroup Switch

Catalyst

Workgroup Switch

Catalyst

Workgroup Switch

Catalyst

CiscoSystems

CiscoSystems

CiscoSystems

CiscoSystems

CiscoSystems

Fig. 4. Scenario 1. The network consists of three routing instances and
routers C, E and D are performing mutual route redistribution. The values
in brackets represent the AD of the routing instances.

have a profound impact on how the network as a whole
populates the FIBs.

III. ILLUSTRATION OF ROUTING INSTABILITIES

Inaccurate RR configurations can cause sub-optimal routing,
route oscillations and routing loops. This section illustrates the
two latter issues. For the other instabilities, please see [2] and
[3]. We have validated all the described scenarios (including
the permanent oscillations in section V) – with the exception
of scenario 2 (section III-B). It was difficult to create the
required race conditions. The validation environment consisted
of 5 routers (Cisco 2600, IOS Version 12.2).

A. Scenario 1: Persistent Routing Loop
The first scenario is a network composed of three routing

processes (see Figure 4). The experiment revealed a persistent
routing loop because of route redistribution.

The example network can be that of a company with three
office branches, each running their own routing instance.
A separate group may administer each site. RR is enabled
between every two routing instances to allow connectivity
between the sites, and every redistributing router performs
mutual RR so that the routing instances can backup each other
in the event of network failure.

We consider a prefix P connected to router A and redis-
tributed into the RIP instance. Alternatively, P can be origi-
nated from another RIP router or injected into RIP through
other means including BGP. The following describes the
sequence of observed events that caused a persistent routing
loop for packets sent to destinations in P .

We use the following notation throughout the paper: routing
instances are numbered (1, 2, ...), routers are labeled (A, B,
...), and routing processes are denoted by <router>.<routing-
instance>, e.g., D.1 designates the RIP process in router D.

t1 Initially, only A’s FIB has an entry to P . After
starting the RIP process on A, the connected route
is redistributed into RIP (i.e., A.1).

t2 D’s FIB includes an entry to P . The route is learnt
from RIP and points to B.

t3 E’s FIB contains a route to P with D as the next-
hop: This is because D redistributes the route from

3

Instance 1

Routing

RIP (120)

Routing

Instance 2

OSPF (110)
Router C

Router A

Router B

Router D

Router E

Workgroup Switch
Catalyst

Workgroup Switch
Catalyst

Workgroup Switch
Catalyst

Workgroup Switch
Catalyst

Workgroup Switch
Catalyst

CiscoSystems

CiscoSystemsCiscoSystems

CiscoSystems

CiscoSystems

Fig. 5. Routers C and D are performing mutual route redistribution. The
redistribution can result in persistent routing loops (C-B-D-E-C) for prefixes
originated from the RIP domain or injected into the RIP domain (e.g., through
router A)

RIP into IGRP (i.e., D.1 into D.3).
t4 C’s FIB presents a route to P . The installed route

is from OSPF (i.e., C.2) and E is the next-hop: C
receives two routes from RIP (from B) and OSPF
(from E). Since OSPF presents a lower AD (110 vs.
120), the latter route is selected.

t5 As B receives the route from A and the redistributed
one from C, we observe 2 cases.

• If the route from C presents a lower metric, C
becomes the next-hop, causing a routing loop
(B-C-E-D-B).

• If the route from A presents a lower metric, A
remains the next-hop resulting in a sub-optimal
path (D, E, C, B, A) from D to A.

When repeating the experiment, the loop sometimes formed
in the opposite direction (B-D-E-C-B) because of a different
order of routing message arrivals.

This configuration consisted of three routing instances.
However, networks with only two routing instances can be
vulnerable as well. The configuration in Figure 5 shows an
example. The network may be migrating from RIP to OSPF.
Mutual redistribution is performed at two redistributing routers
to exchange routing information and to allow domain back up.
When C first redistributed the route from C.1 into C.2, D
received two choices and preferred D.2 because of the lower
AD. Then, D redistributed D.2 into D.1 and B switched to
use D as its next-hop when the redistributed route had a lower
metric value, resulting in a routing loop C-B-D-E-C.

B. Scenario 2: Route Oscillation
The configuration in Figure 5 can also experience severe

route oscillations. [3] describes a similar scenario and explains
that the following hypothetical sequence of events can cause
route flapping. If C and D simultaneously redistribute P into
routing process 2 and then update their FIB at the “same”
time, the route flaps between the 2 routing instances:

t1 C (respectively, D) learns a route from C.1 (respec-
tively, D.1). C (respectively, D) redistributes P from
C.1 into C.2 (respectively, from D.1 into D.2.)

t2 D (respectively, C) receives two routes from 1 and 2.
As the AD of 2 is lower, D (respectively, C) updates

its FIB, preferring the route from 2. Consequently,
D (respectively, C) stops announcing the route into
2 but redistributes the route from 2 to 1.

t3 Because both routers cease to advertise the route into
2, this routing instance no longer has a route to the
destination.

t4 C and D only have one way to reach the destination
(i.e., through C.1 and D.1). Therefore, they each
update their FIB and redistribute the route from 1
into 2.

Noting that the states at (t1) and (t4) are identical, the route
oscillates between the two routing instances.

One may argue that such oscillations, even though possible,
are not likely to occur in practice. For these oscillations to
happen, the signaling messages from the redistributing routers
must be processed in a specific sequence order. Routers’ load,
link delay and other factors will most probably disrupt this
synchronization putting an end to the oscillation. We later
show that RR can actually cause permanent route oscillations,
independent of any race conditions.

IV. A MODEL FOR ROUTE REDISTRIBUTION

To analyze RR, we introduce a model consisting of three
distinct components – 1) Per-Router Route Selection and RR
Logics, 2) Route Propagation Graph, and 3) Network-wide RR
Logic. The first component abstracts the router behavior. We
introduce two logics corresponding to the local route selection
and RR procedures. These logics enable the derivation of the
actual active routes and of the routes that are redistributed at
each redistributing router. While these logics provide a local
view of the operations at each router, we also need a global
view of the interactions between the redistributing routers in
order to determine the paths taken by the data traffic from
each routing instance. To analyze the exchange of routing
information between the redistributing routers, we propose a
second component of the model – the route propagation graph.
This graph provides a global view of the routing instances
present in a network and their RR configuration. Finally, an
integration of the two previous components produces the third
component – a network-wide RR logic. This last component
models the dynamic exchange of routing information between
the routers and consequently allow us to predict the paths
taken by the data packets. Understanding these data flows can
reveal the formation of oscillations, routing loops and other
instabilities.

The model applies to existing routing protocols with the
exception of BGP because both the route selection and route
redistribution logics of this protocol differ from those of other
routing protocols. In terms of route selection logic, BGP
processes first look at the BGP AS PATH parameter to decide
whether to consider a route whereas other routing protocols
consider all incoming routes. BGP’s route redistribution logic
also differs from that of other routing protocols: each vendor
has defined its own set of proprietary options for redistributing
BGP from and into existing IGPs [7], [8], [9].

The proposed model could be extended to include BGP, but

4

Process
Routing

Process
Routing

Filters

Filters

Routing
Process

RIB

Process
Routing

Filters Process
Routing

FiltersProcess
Routing

RIB

Filters

FIB

Process
Routing

Filters Process
Routing

Filters

Routing

Routing

Process

Process

RIB

RIB

Local
Route

(e.g., static)

A
D

 based Selection

Redistribution

ROUTE SELECTION LOGIC RR LOGIC

Fig. 6. Per-router route selection and route redistribution logics. A router
first selects the preferred routing process based on the AD values. Then, it
installs the best route in the FIB, and redistributes the active route according
to the configured policies.

we decide to set aside this protocol to keep the model simple.

A. The Per-Router Route Selection and RR Logics
A router’s operations related to RR can be decomposed into

two main steps (see Figure 6). First, the router selects the best
route according to the route selection logic1, and installs it in
the FIB. A routing process possesses a route to P in its RIB
either because it has originated the prefix or because it has
received a route advertisement from a neighbor router and the
route has passed the import filter(s) configured for this routing
process. Among the routing processes offering a route to P ,
the router chooses the one with the lowest AD. And, within
this selected routing process, the router picks the best route.
The installed route is also called the active route. Then, the
router redistributes the active route according to the RR logic.

The following route selection logic is triggered either when
a new route to P is installed in the RIB of one of the routing
processes or when the previously active route in the FIB is no
longer available (e.g., the router announcing the initial route
may have withdrawn it after a network failure).

Considering a router r, let RP be the set of routing
processes running on r. Each routing process x ∈ RP has
a RIB, x.RIB, and an AD x.ad. For a destination P , let
selected-process(P) be the selected routing process for P
and active-route(P) the installed route used for forwarding
purposes at r. Initially, we set selected-process(P) = NULL
and active-route(P) = NULL.

Procedure Route selection at router r

1: for all routing process x ∈ RP that receives a route to P
do

2: Apply local filters to the route
3: end for
4: for all routing process x ∈ RP such that P ∈ x.RIB do
5: if (selected-process(P) = NULL) OR (x.ad < selected-

process(P).ad) OR (x.ad == selected-process(P).ad
AND rand(0, 1) == 1) then

1The route selection procedure may be vendor specific. Some implemen-
tations may maintain the existing selected routing process when the AD of
the routing process advertising the new route is not strictly smaller than the
currently selected one.

6: selected-process(P) ← x
7: selected-process(P).ad ← x.ad
8: Select best route from selected-process(P) (according

to metric) and install it in FIB
9: active-route(P) ← selected best route

10: end if
11: end for

Then, the router redistributes the active route according to
the RR logic.

Procedure RR at router r

1: for all routing process y ∈ RP such that redistribution of
P from selected-process(P) to y is enabled do

2: if permitted by RR filter between the two processes
then

3: redistribute active(P) into y, and
4: set route attributes according to the RR filter
5: end if
6: end for
It is important to note that a redistributed route is marked

with the local FIB as the source of the route or stored outside
the target process’s regular RIB, and as such it will not
be offered back to the same FIB. For the same reason, a
redistributed route will be removed if the original active route
is no longer present in the FIB.

B. The Route Propagation Graph
To analyze RR, we extend the routing instance graph,

introduced in [1] to represent the network-wide static RR
configuration among routing instances.

We define a weighted directed graph G = <V, R, O, E,
D> called the route propagation graph to model the complete
route redistribution configuration with respect to a prefix P .
Each routing instance is represented by a vertex u ∈ V , and
associated with its default AD (see Figure 7). Static routes
and directly connected subnets are often redistributed into
routing protocols. We use two special vertices to represent
the origins of these two types of routes. The set O ⊆ V is
the set of routing instances that originate the prefix P . Each
vertex o ∈ O is represented as a striped vertex. A destination
may be originated by several routing instances. The set R
designates the routers that perform route redistribution among
routing instances of V . For each route redistribution from
routing instance u to routing instance y performed by r ∈ R,
we represent such redistribution by a dashed edge from u
to v. The edge is marked with r to indicate the router that
is redistributing the route between the two routing instances.
We note such edge <u, v, r>. As described in section II,
the default AD of a routing process can be overridden by
a customized value at each router. In such case, we add
the customized AD of the routing process(es) at router r
to the edge. A redistribution from u to v by router r, with
customized AD values for both processes r.u (d1) and r.v (d2),
is represented by an edge from u to v labeled “d1, r, d2” (see
Figure 9). For RR using the default AD values, the d values
are omitted from the edge.

5

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

Instance 2

Instance 1

originating routing
process

C

E

D

C

E

D
Instance 3

IGRP

OSPF

RIP

(110)

(100)

(120)

Fig. 7. Illustration of the route propagation graph of the network in scenario
1. The values in brackets indicate the default AD of the routing instances.

In addition, for every router r ∈ R, we need to represent
all the routing processes running on r, including the ones that
are not part of the RR configuration. The reason is that these
routing processes affect the route selection and RR logics. For
example, consider a router r running three routing processes
x, y, and z. Even though the redistribution from x into y is
enabled, x may not redistribute any route into y when z is the
selected routing process at r. A routing process of r which
participates in routing instance w but is not part of the RR
configuration is represented by an edge from w to w marked
by r (Figure 10).

It is important to note that each vertex is a routing instance,
but a router deals with routing processes, each of which is a
member of a routing instance. When a route is redistributed
into a routing instance, every routing process of that instance
should eventually receive an advertisement of that route.

The RR graph of the network in Figure 4 is illustrated in
Figure 7. The dashed edge from RIP to OSPF, labeled C,
indicates that router C is configured to redistribute P from
the RIP process into the OSPF process.

C. The Network-wide RR Logic
The two previous components of the model are not sufficient

to derive the data paths. The first component, per-router route
selection and RR logics, focuses only on a single router.
However, the received routing messages at each router depend
on that router’s interaction with other routers. Looking at a
single router at a time does not allow us to derive the actual
inputs and outputs of the router. The second component, the
route propagation graph, only represents the topology and
the configuration of the network. In both components, the
network-wide dynamics are missing. To model this crucial
information, we introduce a third component, the Network-
wide RR Logic.

To analyze the exchange of routing information among
the routing instances and derive the active routes, we adopt
the activation sequence concept suggested in [10]. At each
time step, a set of redistributing routers in R are activated.
When activated, a node performs the route selection and RR
procedures. Because the set of routers that are activated at
each time step is arbitrary, we may obtain a different outcome
for each run.

The following describes a logic to derive the propagation
of signaling messages and identify the actual redistributions

in the RR graph for a specific activation sequence. The
network-wide RR logic uses a variable called candidate-list,
CL, for storing the list of all routers from R to be activated,
and another variable S for tracking the subset of routers
activated at each time step. We represent actual route
redistribution events by solid edges. A redistribution edge
changes from dashed to solid, i.e., is activated, if (1) the route
to be redistributed is active and (2) the policy configured
for that edge permits this route to be redistributed. Also,
we represent the data paths by thick solid arrows. Finally, a
routing instance colored in white indicates that it does not
have a route to P , whereas a routing instance colored in dark
means that the routing instance does.

Procedure Network-wide RR
Initialization

1: t = 0
2: Insert the redistributing routers that have an edge either

from or to an originating vertex into CL.
Main loop

1: while CL 6= EMPTY SET do
2: t++
3: Remove a subset S of routers from CL
4: for all router r ∈ S concurrently do
5: Execute route-selection logic at r
6: if r’s selected routing process has changed then
7: //let r.u denotes the new selected routing process
8: De-activate all edges labeled r
9: if there is no configured redistribution from nor to

r.u then
10: Activate edge <u,u,r> //to mark the selected

routing process at r
11: else
12: Execute route-redistribution logic at r
13: for all routing processes r.v running on r do
14: if r is redistributing a route to P from r.u

into r.v then
15: Activate edge <u,v,r>
16: end if
17: end for
18: for all vertex v to which <u,v,r> is activated

do
19: insert routers that have an edge from or to v

into CL (if not already present)
20: end for
21: end if
22: end if
23: end for
24: for all vertice u ∈ V \O do
25: if there is no active edge from a routing instance other

than u pointing into u then
26: Color u in white
27: Insert routers that have an active edge from u into

CL (if not already present)
28: else if there is an active edge from a routing instance

6

other than u pointing into u then
29: Color u in dark
30: end if
31: end for
32: end while

We refer to the sequence of RR graphs in an activation
sequence as routing states. We say that a routing state is stable
when all the redistributing routers have selected their best
option among the available choices and there is no signaling
message in transit in the network (i.e., CL and S are empty).

V. DISCLOSURE OF INSTABILITIES USING RR MODEL

This section and the next one (section VI) present two
applications of the RR model. This section studies the net-
work wide routing dynamics: section V-A explains how the
developed RR model allows us to analyze the propagation of
routing information and to detect potential instabilities in a
network. Based on the derived insight, section V-B reveals
new instabilities that RR can cause.

A. Detection of Instabilities
The routing states can expose instabilities that can re-

sult from RR. Considering a routing state, we define a
cycle as a set of k distinct routers r1, r2, ..., rk ∈ R such
that <u1, u2, r1>, <u2, u3, r2>, ..., <uk, uk+1, rk> ∈ E,
<u1, u2, r1>, <u2, u3, r2>, ..., <uk, uk+1, rk> are active at
time t, and u1 = uk+1. A cycle is permanent if there exists a
time tc, such that for all t > tc, the cycle is present in G.

A permanent cycle in a RR graph does not imply the
existence of a persistent routing loop. As described in section
III, depending on the internal metrics within the routing
instances, either a persistent routing loop may form, or a
sub-optimal routing path may arise. Both consequences are
unwanted and consequently, permanent cycles are undesirable.

The RR model allows us to analyze the propagation of
routing information for different activation sequences and
consequently, detect the potential formation of cycle. Figure 8
illustrates an activation sequence which converges to a perma-
nent cycle in the network of Figure 4.

t=0 A route P is originated by the RIP routing instance
(1). Routers C and D are connected to 1. Conse-
quently, CL(t=0) = {C, D}.

t=1 We assume S(t=1) = {C, D} ⊆ CL(t=0). We
run the route selection and RR logics at routers C
and D. C learns a route to P through C.1 and
redistributes it from C.1 into C.2. The corresponding
edge (from C.1 to C.2) becomes solid to indicate
that the redistribution is active. Router E which is
connected to 2 is inserted into CL. Similarly, D
learns a route to P and redistributes it from D.1 to
D.3. The edge from D.1 to D.3 also becomes solid.
We have CL(t=1) = {E}.

t=2 We assume S(t=2) = {E}. We run the route selection
and RR logics at router E. Router E is receiving
a route to P through E.2 and E.3. Because E.3
presents a lower AD (100), E selects E.3 as its

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

Instance 1
RIP

(120)

S = {E}

�������
�������
�������
�������
�������
�������
�������
�������

	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	

process
originating routing

configured route
redistribution

active route
redistribution

data path

LEGEND

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

Instance 2
OSPF
(110)

C

E

D

D

E

C

Instance 3
IGRP
(100)

Instance 1
RIP
(120)

(110)

Instance 3
IGRP
(100)

C

E

D

D

E

C

(120)

Instance 2
OSPF

Instance 1
RIP

t=0

CL = {C, D}

C

E

D

D

E

C

Instance 3
IGRP
(100)

OSPF
(110)

Instance 2

Instance 3

Instance 2

Instance 1
C

E

D

D

E

C

RIP
(120)

IGRP

(110)
OSPF

(100)

t=1

New CL = {E}

t=2

New CL = {C}

S = {C}

t=3

Instance 3

Instance 2

Instance 1
C

E

D

D

E

C

RIP
(120)

IGRP

(110)
OSPF

(100)

S = {D}

t=4

New CL = {D} New CL = { }

S = {C, D}

Fig. 8. Illustration of an activation sequence and the corresponding routing
states for the network in scenario 1.

selected routing process and redistributes the route
from E.3 into E.2. The edge from E.3 to E.2
becomes solid to indicate that the corresponding
redistribution is active. Since C is connected to 2,
C is added to CL(t=2). CL(t=2) = {C}.

t=3 We assume S(t=3) = {C}. Router C has two choices
to reach P (through C.1 and C.2). Because C.2’s
AD is lower than the one from C.1, C.2 becomes
the selected routing process at C and C redistributes
from C.2 into C.1. The edge from C.1 to C.2 is
de-activated and instead the one from C.2 to C.1 is
active. We have CL(t=3) = {D}.

t=4 We assume S(t=4) = {D}. D has only one choice to
the destination (i.e., through D.1). No other router
than D announces a route to P into 3. Therefore,
D maintains its selected routing process (D.1), and
CL(t=4) = EMPTY SET.

The paths (thick arrows) taken by the data packets to reach
P are represented in the final graph. They form a cycle that
reveals the potential formation of a routing loop.

Some configurations of RR always converge to a state
containing a cycle (independently of the activation sequence)
(e.g., Figure 4). Other configurations always converge to a

7

Configured Route
Redistribution

Active Route
Redistribution

���������
���������
���������
���������
���������
���������
���������
���������

�������
�������
�������
�������
�������
�������
�������
�������

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

�������
�������
�������
�������
�������
�������
�������
�������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

 � � �
 � � �
 � � �
 � � �
 � � �
 � � �
 � � �
 � � �

!�!�!�!�!
!�!�!�!�!
!�!�!�!�!
!�!�!�!�!
!�!�!�!�!
!�!�!�!�!
!�!�!�!�!
!�!�!�!�!

"�"�"�"
"�"�"�"
"�"�"�"
"�"�"�"
"�"�"�"
"�"�"�"
"�"�"�"
"�"�"�"

#�#�#�#�#
#�#�#�#�#
#�#�#�#�#
#�#�#�#�#
#�#�#�#�#
#�#�#�#�#
#�#�#�#�#
#�#�#�#�#

$�$�$�$�$
$�$�$�$�$
$�$�$�$�$
$�$�$�$�$
$�$�$�$�$
$�$�$�$�$
$�$�$�$�$
$�$�$�$�$

1

2 3

4

2 3

4

2 3

4

2 3

4

2 3

4

2 3

4

2 3

4

2 3

4

2 3

4

Data Path

1

1 1

1

11

11

Sequence 1 Sequence 2

D

D

B
BA

A

(100) (90)

(80)

(90)

(100) (90)

(80)

(90)

(100) (90)

(80)

(90)

(90) (100) (90)

(80)

(90)(100)(90)

(80)

(90) (100) (90)

(80)

D

(100) (90)

(80)

(90)
A

A

D

A

A

D

D

BA

A B

BA

A

105, C

(100) (90)

(80)

(90)

(100) (90)

(80)

(90)
C, 105

C, 105

C, 105

105, C

105, C

B

Fig. 9. Scenario 3. Detection of persistent routing loops. Sequence 1 does
not result in any routing loop but sequence 2 discloses a potential routing
loop. The values on the edges represent the customized AD: router C has a
customized AD (105) value for routing process 4, overriding the default value
(80).

cycle-free state. Some configurations can converge to a state
which includes a cycle depending on the activation sequence
(for example, scenario 3 of Figure 9). Finally, some configu-
rations may converge after some arbitrary time (section III-B,
Figure 5) and others may always diverge (section V-B).

We say that a RR configuration is safe if for all activa-
tion sequences, the execution of the network-wide RR logic
converges to a cycle free state.

B. Disclosure of New Instabilities

Vendor documentation [2], [3] mentioned the potential for-
mation of routing loop, sub-optimal routing and route flapping
in certain race conditions as illustrated in section III. Our
model shows new instabilities that can result from RR. Perma-
nent route oscillations, independent from any race conditions,
can indeed appear due to improper RR configuration.

To demonstrate the formation of permanent route oscilla-
tions, we consider the topology in scenario 4 (Figure 10). The
corresponding RR graph is depicted at the top of the figure
(t=0). A prefix is originated by routing instance 1.

t=1 C learns a route to the prefix through C.1 and
redistributes the route from C.1 into C.2.

t=2 A learns a route through A.2 and redistributes the
route from A.2 into A.3.

t=3 B receives the route through B.3, installs it in its
FIB and redistributes the route from B.3 into B.4.

t=4 A receives two routes to the destination: from A.2

BAC

BAC

BAC

BAC

A

A

A

BAC
A

%&%&%&%&%
%&%&%&%&%
%&%&%&%&%
%&%&%&%&%
%&%&%&%&%
%&%&%&%&%
%&%&%&%&%
%&%&%&%&%

'&'&'&'&'
'&'&'&'&'
'&'&'&'&'
'&'&'&'&'
'&'&'&'&'
'&'&'&'&'
'&'&'&'&'
'&'&'&'&'

t=2 2 41 3
(80) (110) (90) (80)

BAC
A

(&(&(&(&(
(&(&(&(&(
(&(&(&(&(
(&(&(&(&(
(&(&(&(&(
(&(&(&(&(
(&(&(&(&(
(&(&(&(&(

)&)&)&)&)
)&)&)&)&)
)&)&)&)&)
)&)&)&)&)
)&)&)&)&)
)&)&)&)&)
)&)&)&)&)
)&)&)&)&)

&&*&*&*
&&*&*&*
&&*&*&*
&&*&*&*
&&*&*&*
&&*&*&*
&&*&*&*
&&*&*&*

+&+&+&+&+
+&+&+&+&+
+&+&+&+&+
+&+&+&+&+
+&+&+&+&+
+&+&+&+&+
+&+&+&+&+
+&+&+&+&+

,&,&,&,&,
,&,&,&,&,
,&,&,&,&,
,&,&,&,&,
,&,&,&,&,
,&,&,&,&,
,&,&,&,&,
,&,&,&,&,

-&-&-&-&-
-&-&-&-&-
-&-&-&-&-
-&-&-&-&-
-&-&-&-&-
-&-&-&-&-
-&-&-&-&-
-&-&-&-&-

.&.&.&.&.
.&.&.&.&.
.&.&.&.&.
.&.&.&.&.
.&.&.&.&.
.&.&.&.&.
.&.&.&.&.
.&.&.&.&.

/&/&/&/&/
/&/&/&/&/
/&/&/&/&/
/&/&/&/&/
/&/&/&/&/
/&/&/&/&/
/&/&/&/&/
/&/&/&/&/

0&0&0&0&0
0&0&0&0&0
0&0&0&0&0
0&0&0&0&0
0&0&0&0&0
0&0&0&0&0
0&0&0&0&0
0&0&0&0&0

1&1&1&1&1
1&1&1&1&1
1&1&1&1&1
1&1&1&1&1
1&1&1&1&1
1&1&1&1&1
1&1&1&1&1
1&1&1&1&1

2&2&2&2&2
2&2&2&2&2
2&2&2&2&2
2&2&2&2&2
2&2&2&2&2
2&2&2&2&2
2&2&2&2&2
2&2&2&2&2

3&3&3&3&3
3&3&3&3&3
3&3&3&3&3
3&3&3&3&3
3&3&3&3&3
3&3&3&3&3
3&3&3&3&3
3&3&3&3&3

t=1

t=4

t=5

t=3

t=0 1 2 3 4
(80) (110) (90) (80)

41 2 3
(90) (80)(80) (110)

2 3 41
(80)(80) (110) (90)

3 41 2
(80) (110) (90) (80)

3 41 2
(80) (110) (90) (80)

BAC

A

t=6 2 41 3
(80) (110) (90) (80)

A

Fig. 10. Scenario 4. Illustration of permanent route flap. Router A runs 3
routing processes but no redistribution is enabled neither from nor to A.4.
The routing states highlight the formation of permanent oscillations since the
states at t=2 and t=6 are identical.

and from A.4. Because A.4 has a lower AD, A.4
becomes the selected routing process. Consequently,
A stops redistributing from A.2 into A.3.

t=5 Because A stopped redistributing from A.2 into A.3,
B no longer receives any announcement. B removes
the route and stops announcing it into B.4.

t=6 Consequently, A.4 no longer receives a route to the
destination either. Instead, A learns the route from
A.2 and redistributes it into A.3. We note that this
state is identical to the one at t=2. A permanent
route oscillation has formed. This instability has been
observed in the conducted experiments.

These permanent oscillations come from the fact that the
redistribution of the routes into the routing processes depends
on the routes present in the FIB, which in turn depend on the
routes present in the routing processes. Section II explained
that routes redistributed from a router does not directly impact
the local route selection. However, since the redistributed
routes may get further redistributed, those routes can come
back and ultimately affect the route selection outcomes.

VI. TOWARDS INSTABILITY-FREE RR CONFIGURATION

In this section, we investigate how to determine if a given
RR configuration can result in instabilities. First, we demon-
strate that determining whether a configuration can converge
to a state containing a cycle is a NP-hard problem. The
complexity of the task motivates the search for sufficient
conditions. In section VI-B, we introduce a sufficient condition
guaranteeing that a RR configuration does not result in any
persistent routing loop or oscillations.

8

4545454
4545454
4545454
4545454
4545454
4545454
4545454
4545454

6565656
6565656
6565656
6565656
6565656
6565656
6565656
6565656

7575757
7575757
7575757
7575757
7575757
7575757
7575757
7575757

8585858
8585858
8585858
8585858
8585858
8585858
8585858
8585858

9595959
9595959
9595959
9595959
9595959
9595959
9595959
9595959

:5:5:5:
:5:5:5:
:5:5:5:
:5:5:5:
:5:5:5:
:5:5:5:
:5:5:5:
:5:5:5:

(90)

(80)

(80)

(80)

(80)

(80)

(80)

(80)

(a)

o o

j(c) X = FALSE
(90)

j(b) X = TRUE
(90)

jX

jX jX

jX jX jX

jYjY

jY

(80) (80)

ja jb

o
j jb

ja jb

jb ja ja j

jb ja

a

b

Fig. 11. Conversion of variable into subgraph. Each variable Xj is repre-
sented by the topology in figure (a). Depending on the activation sequence,
we can obtain two different stable routing states depicted by figures (b) and
(c). We associate the redistribution outcome of figure (b) with TRUE assigned
to Xj and that of figure (c) with FALSE assigned to Xj .

A. Complexity of Route Redistribution Analysis

We show that given a RR configuration, determining
whether the redistributions converge to a state containing a
cycle is NP-hard.

Problem: considering a route propagation graph <V, R, O,
E, D>, we ask whether there exists an activation sequence
such that the redistributions converge to a state which includes
a cycle of active redistributions. We will call this problem, the
Route Redistribution Configuration - Cycle Detection (RRC-
CD) problem.

Theorem 6.1: the RRC-CD problem is NP-hard.
Proof: The proof is inspired from [11].
To show that RRC-CD is NP-hard, we rely on the fact that

the 3-CNF SAT problem is a NP-complete problem [12]. We
more specifically prove that RRC-CD ≥p 3-CNF SAT. We
consider an instance of 3-CNF SAT, i.e., a set of m clauses of
length at most 3 over n Boolean variables: B = C1∧C2∧ ...∧
Cm with each clause Ck, (1 ≤ k ≤ m), composed of at most
three distinct literals: Ck = lk1∨lk2∨lk3 . Each lki (1 ≤ i ≤ 3) is of
simple form of a single variable: Xj or Xj (1 ≤ j ≤ n). We
construct a route propagation graph G such that B is satisfiable
if and only if there exists an activation sequence such that G
converges to a state including a cycle of active redistributions.
We construct G as follows:

1) O contains an originating vertex o.
2) For each clause Ck, insert new node labeled Ck into V

For each literal lki (1 ≤ i ≤ 3) of the form Xj or Xj

(1 ≤ j ≤ n).
If Xj /∈ V , add the subgraph Figure 11a into G,
If lki == Xj , insert edge from Xj to Ck labeled gj

If lki == Xj , insert edge from Xj to Ck labelled gj

3) For each Ck(1 ≤ k ≤ m), add the nodes Uk, Vk , Zk, Wk

and the associated edges as illustrated in Figure 12.
4) For each Ck(1 ≤ k ≤ m), add edge from Uk to Uk+1

(Um+1=U1) with label “dk, ek” where the customized AD
of dk(= 90) forces ek to prefer Zk over Uk over Uk+1.

Such graph can be computed from B in polynomial times.
Figure 13 provides an illustration of the graph for B = (X1 ∨
X2∨X3)∧ (X1 ∨X2 ∨X3)∧ (X1 ∨X2 ∨X3). We now show
that the transformation of B into G is a reduction
⇒ We show that if B has a satisfying assignment, there

is an activation sequence such that G converges and the final
state includes a cycle of active redistributions <U1, U2, e1>,
<U2, U3, e2>, ..., <Um, U1, em>. B having a satisfying as-
signment implies that each clause Ck contains at least one
literal lki (1 ≤ i ≤ 3) with a TRUE value. By definition of the
variable assignment (Figures 11b, 11c) and by construction
of G, the router gj (1 ≤ j ≤ n) or gj redistributes a route
from Xj or Xj into the routing instance Ck. As such, each
routing instance Ck has a route to P . Then, ∀k ∈ [1, m], the
router fk redistributes the route from Ck into Uk.

Every router ek is running four processes (Uk, Uk+1, Wk

and Zk). We show that Uk is the selected routing process at ek:
Only processes Uk and Uk+1 have a route. Zk does not have a
route since router dk picks Ck as its selected routing process.
Consequently, no router announces a route to Zk, and neither
Zk nor Wk have a route to P . Between Uk and Uk+1, Uk

presents a lower administrative distance at ek and is therefore
preferred. As such ∀k ∈ [1, m], the router ek learns a route to
P from Uk and redistributes it into Uk+1.

The redistributions converge, and <U1, U2, e1>,
<U2, U3, e2>, ..., <Um, U1, em> form a cycle (Figure 13).
⇐ For the other direction, we want to show that if G has

converged to a stable state containing a permanent cycle of
active redistributions, then there exists an assignment such that
the Boolean expression B is true.

Suppose that G has converged and contains a cycle. The
only possible cycle is composed of the edges <U1, U2, e1>,
<U2, U3, e2>, ..., <Um, U1, em>.

We show that routing instances C1, C2, ..., Cm all have a
stable route to P . We prove it by contradiction: we assume
that there exists a routing instance Ck(1 ≤ i ≤ m), with
no stable route to P . This imples that none of the gj nor gj

(1 ≤ j ≤ n) redistributes a stable route into Ck.
Considering router dk, it runs 4 routing processes (Ck, o,

Vk and Zk). Because only o has a stable route to P , dk

redistributes from o into Zk. (Ck does not have a stable route
to P by assumption. Consequently, because of the topology
of G, Vk does not either). Then, router ek learns a route to P
from Zk and redistributes it into Wk. Independent of whether
Uk has a route to P or not (e.g., from Uk−1), ek picks Zk

as its selected routing process since Zk is the routing process
with the lowest AD at ek. The edge <Uk,Uk+1,ek> is not
active.

This contradicts with the initial assumption that
<U1, U2, e1>, <U2, U3, e2>, ..., <Um, U1, em> form a
cycle of active redistributions.

To summarize, we have proven that ∀k ∈ [1, m], Ck has a
stable route to P . In other words, ∀k ∈ [1, m], one of the gj (or
gj) announces a stable from Xj (or Xj) into Ck. By assigning
the corresponding Xj (or Xj) the value true, we obtain an
assignment that satisfies B since every clause includes a literal

9

2b
3a b 3

3X2X1X

kC

3X2X1X

1Y 2Y 3Y

;5;5;5;
;5;5;5;
;5;5;5;
;5;5;5;
;5;5;5;
;5;5;5;
;5;5;5;
;5;5;5;

<5<5<5<
<5<5<5<
<5<5<5<
<5<5<5<
<5<5<5<
<5<5<5<
<5<5<5<
<5<5<5<

(90)
o

1a
3a 2a 2b

2a

3b 1b

1b
1a

2
31

k

k

k

(80) (80) (80)

(80)

k

(100)

(80) (90)

(80)(80)

(80)(80)(80)(80)(80)

kU

f

d

g
g

g

kV

k kZW e

d

Fig. 12. Construction of the sub-graph for clause Ck = X1 ∨ X2 ∨ X3

Y1

3a 3b 2b 2a 1b 1a
3X2X1X

C2C1

1X 2X 3X

3Y2Y

=>=>=>=
=>=>=>=
=>=>=>=
=>=>=>=
=>=>=>=
=>=>=>=
=>=>=>=
=>=>=>=

?>?>?>?
?>?>?>?
?>?>?>?
?>?>?>?
?>?>?>?
?>?>?>?
?>?>?>?
?>?>?>?

(90)
o1a

1b
3a

3b
2b 2a

21

1

21

3

1

3

(80)

(80)

(100)

3

32

(80)

(80) (80) (90)

3

(100)

(90)

(100)

(90)(80)

(80)(80)

(80) (80) (80) (80) (80)

(80)(80)

(80) (80) (80)

3U

f

2U

2f

1U

f

d

3

2

g

g

g

1

1

11
e

d

W Z

1

2

g

g
g

d
2

C3 3

3
3

32
2

2

3

2

1

V V

ZZW

g
g

g

d d

e e W

d
1V

90, e

90, e 90, e

Fig. 13. Graph for B = (X1 ∨ X2 ∨ X3) ∧ (X1 ∨ X2 ∨ X3) ∧ (X1 ∨ X2 ∨ X3).

that has a true value.

B. A Sufficient Condition for Safety
Given the complexity of the RRC-CD problem, we present

a sufficient condition, which can be checked in polynomial
time, to guarantee that a RR configuration will result in neither
persistent routing loops nor oscillations.

For this purpose, we introduce the concept of a primary
route propagation graph <V, R, O, E’, D>. The graph
represents the preferred redistributions between the different
routing instances. It is extracted from the route propagation
graph <V, R, O, E, D> as follows:

• We initialize E′ = NULL.
• For each redistributing router, we only conserve the

redistribution(s) from the routing process(es) presenting
the lowest AD. We insert these edges into E ′ and discard
all the other ones.

Theorem 6.2: A RR configuration whose primary route
propagation graph satisfies the three following conditions is

safe from permanent routing loops and oscillations:
1) For all vertices u ∈ V , there is a redistribution path from

an originating vertex o ∈ O to u. We say that there is a
redistribution path from o to u if there exists u1, u2, ...,
uk ∈ V , and r0, r1, ..., rk ∈ R, such that <o, u1, r0>,
<u1, u2, r1>, ..., <uk, u, rk> ∈ E′.

2) The graph is acyclic
3) Every redistributing router is redistributing from a single

routing instance.
Proof: We consider a network whose primary route propa-

gation graph satisfies the three identified conditions. For each
vertex u in the route propagation graph, following condition
(1), there exists a redistribution path from an originating
vertex o ∈ O to u. Such path is valid since each edge
on the path is active. This derives from the fact that each
redistribution on the path is a preferred one (by construction
of the primary route propagation graph) and from condition
(3) that states that each redistributing router redistributes from
only a single routing instance. A network configuration whose

10

@A@A@A@
@A@A@A@
@A@A@A@
@A@A@A@
@A@A@A@
@A@A@A@
@A@A@A@

BABABAB
BABABAB
BABABAB
BABABAB
BABABAB
BABABAB
BABABAB

CACACACACACACACACAC
CACACACACACACACACAC
CACACACACACACACACAC
CACACACACACACACACAC
CACACACACACACACACAC
CACACACACACACACACAC
CACACACACACACACACAC
CACACACACACACACACAC
CACACACACACACACACAC
CACACACACACACACACAC
CACACACACACACACACAC
CACACACACACACACACAC
CACACACACACACACACAC
CACACACACACACACACAC
CACACACACACACACACAC
CACACACACACACACACAC
CACACACACACACACACAC
CACACACACACACACACAC

DADADADADADADADADAD
DADADADADADADADADAD
DADADADADADADADADAD
DADADADADADADADADAD
DADADADADADADADADAD
DADADADADADADADADAD
DADADADADADADADADAD
DADADADADADADADADAD
DADADADADADADADADAD
DADADADADADADADADAD
DADADADADADADADADAD
DADADADADADADADADAD
DADADADADADADADADAD
DADADADADADADADADAD
DADADADADADADADADAD
DADADADADADADADADAD
DADADADADADADADADAD
DADADADADADADADADAD

EAEAEAEAEAEAEAEAEAE
EAEAEAEAEAEAEAEAEAE
EAEAEAEAEAEAEAEAEAE
EAEAEAEAEAEAEAEAEAE
EAEAEAEAEAEAEAEAEAE
EAEAEAEAEAEAEAEAEAE
EAEAEAEAEAEAEAEAEAE
EAEAEAEAEAEAEAEAEAE
EAEAEAEAEAEAEAEAEAE
EAEAEAEAEAEAEAEAEAE
EAEAEAEAEAEAEAEAEAE
EAEAEAEAEAEAEAEAEAE
EAEAEAEAEAEAEAEAEAE
EAEAEAEAEAEAEAEAEAE
EAEAEAEAEAEAEAEAEAE
EAEAEAEAEAEAEAEAEAE
EAEAEAEAEAEAEAEAEAE
EAEAEAEAEAEAEAEAEAE

FAFAFAFAFAFAFAFAF
FAFAFAFAFAFAFAFAF
FAFAFAFAFAFAFAFAF
FAFAFAFAFAFAFAFAF
FAFAFAFAFAFAFAFAF
FAFAFAFAFAFAFAFAF
FAFAFAFAFAFAFAFAF
FAFAFAFAFAFAFAFAF
FAFAFAFAFAFAFAFAF
FAFAFAFAFAFAFAFAF
FAFAFAFAFAFAFAFAF
FAFAFAFAFAFAFAFAF
FAFAFAFAFAFAFAFAF
FAFAFAFAFAFAFAFAF
FAFAFAFAFAFAFAFAF
FAFAFAFAFAFAFAFAF
FAFAFAFAFAFAFAFAF
FAFAFAFAFAFAFAFAF

originating routing
process

Instance 2

Instance 1 EE

Instance 3
IGRP

OSPF

RIP

(110)

(100)

(120)

Instance 2

Instance 1 E

Instance 3
IGRP

OSPF

RIP

(110)

(100)

(120)

90, C

(a) (b)

90, D

90, C
C, 90

D, 90

90, D

Fig. 14. The AD for C.1 and D.1 are customized to the value 90. The
graph in (a) represents the corresponding primary route propagation graph.
The graph in (b) depicts the state whereto RR converges.

primary route propagation graph satisfies conditions (1) and
(3) converges to a stable state: each redistributing router
receives a route from its preferred routing process and will
select it. Finally, condition (2) ensures that no routing loop
can exist. The construction of the graph and the verification
of the 3 conditions can clearly be performed in polynomial
times.

To illustrate the utility of the sufficient condition, again
consider the network configuration used for scenario 1 of
section III. By assigning the value 90 to C.1’s and to D.1’s
AD, the configuration complies with the sufficient condition
and is guaranteed to converge to an acyclic routing state. The
corresponding primary route propagation graph is depicted
in Figure 14a. In contrast to Figure 8, for all activation
sequences the route redistributions converge to the same safe
state (Figure 14b) where the edges from the primary route
propagation graph are active. Figure 15 illustrates the transient
and final states for one of the activation sequences.

The router redistribution model and the sufficient condition
allow one to perform “what if” analysis and detect the configu-
ration errors before deployment. [11] introduces the concept of
a robust configuration which remains safe after node failures.
A similar analysis can be carried out for route redistribution
but the details are outside the scope of this paper.

A new area of research consists in identifying operational
guidelines (i.e., constraints on actual configuration parameters)
for achieving properties such as safety and robustness. [13]
constitutes a first step in this line of research.

VII. TOWARDS A SAFE-BY-DESIGN RR PROTOCOL

The previous sections address problems associated with
the current RR procedure defined by vendors. They focused
on methods that can be implemented using existing router
features. In this section, we investigate longer-term solutions.
We consider possible extensions and modifications to the RR
procedure so that desired properties can be safely supported.
The aim is to derive a RR protocol that is safe by design, i.e.,
it will always converge to an acyclic routing state, even in the
presence of configuration errors.

A. RR and Strict Monotonicity
The analysis of RR operations reveals that RR behaves

like a distance vector protocol. When a routing process x
redistributes a route to a prefix P to a routing process y,

GHGHGHGHGHGHGHGHGHG
GHGHGHGHGHGHGHGHGHG
GHGHGHGHGHGHGHGHGHG
GHGHGHGHGHGHGHGHGHG
GHGHGHGHGHGHGHGHGHG
GHGHGHGHGHGHGHGHGHG
GHGHGHGHGHGHGHGHGHG
GHGHGHGHGHGHGHGHGHG
GHGHGHGHGHGHGHGHGHG
GHGHGHGHGHGHGHGHGHG
GHGHGHGHGHGHGHGHGHG
GHGHGHGHGHGHGHGHGHG
GHGHGHGHGHGHGHGHGHG
GHGHGHGHGHGHGHGHGHG
GHGHGHGHGHGHGHGHGHG
GHGHGHGHGHGHGHGHGHG
GHGHGHGHGHGHGHGHGHG
GHGHGHGHGHGHGHGHGHG

IHIHIHIHIHIHIHIHIHI
IHIHIHIHIHIHIHIHIHI
IHIHIHIHIHIHIHIHIHI
IHIHIHIHIHIHIHIHIHI
IHIHIHIHIHIHIHIHIHI
IHIHIHIHIHIHIHIHIHI
IHIHIHIHIHIHIHIHIHI
IHIHIHIHIHIHIHIHIHI
IHIHIHIHIHIHIHIHIHI
IHIHIHIHIHIHIHIHIHI
IHIHIHIHIHIHIHIHIHI
IHIHIHIHIHIHIHIHIHI
IHIHIHIHIHIHIHIHIHI
IHIHIHIHIHIHIHIHIHI
IHIHIHIHIHIHIHIHIHI
IHIHIHIHIHIHIHIHIHI
IHIHIHIHIHIHIHIHIHI
IHIHIHIHIHIHIHIHIHI

JHJHJHJHJHJHJHJHJHJ
JHJHJHJHJHJHJHJHJHJ
JHJHJHJHJHJHJHJHJHJ
JHJHJHJHJHJHJHJHJHJ
JHJHJHJHJHJHJHJHJHJ
JHJHJHJHJHJHJHJHJHJ
JHJHJHJHJHJHJHJHJHJ
JHJHJHJHJHJHJHJHJHJ
JHJHJHJHJHJHJHJHJHJ
JHJHJHJHJHJHJHJHJHJ
JHJHJHJHJHJHJHJHJHJ
JHJHJHJHJHJHJHJHJHJ
JHJHJHJHJHJHJHJHJHJ
JHJHJHJHJHJHJHJHJHJ
JHJHJHJHJHJHJHJHJHJ
JHJHJHJHJHJHJHJHJHJ
JHJHJHJHJHJHJHJHJHJ
JHJHJHJHJHJHJHJHJHJ

KHKHKHKHKHKHKHKHK
KHKHKHKHKHKHKHKHK
KHKHKHKHKHKHKHKHK
KHKHKHKHKHKHKHKHK
KHKHKHKHKHKHKHKHK
KHKHKHKHKHKHKHKHK
KHKHKHKHKHKHKHKHK
KHKHKHKHKHKHKHKHK
KHKHKHKHKHKHKHKHK
KHKHKHKHKHKHKHKHK
KHKHKHKHKHKHKHKHK
KHKHKHKHKHKHKHKHK
KHKHKHKHKHKHKHKHK
KHKHKHKHKHKHKHKHK
KHKHKHKHKHKHKHKHK
KHKHKHKHKHKHKHKHK
KHKHKHKHKHKHKHKHK
KHKHKHKHKHKHKHKHK

LHLHLHLHLHLHLHLHLHL
LHLHLHLHLHLHLHLHLHL
LHLHLHLHLHLHLHLHLHL
LHLHLHLHLHLHLHLHLHL
LHLHLHLHLHLHLHLHLHL
LHLHLHLHLHLHLHLHLHL
LHLHLHLHLHLHLHLHLHL
LHLHLHLHLHLHLHLHLHL
LHLHLHLHLHLHLHLHLHL
LHLHLHLHLHLHLHLHLHL
LHLHLHLHLHLHLHLHLHL
LHLHLHLHLHLHLHLHLHL
LHLHLHLHLHLHLHLHLHL
LHLHLHLHLHLHLHLHLHL
LHLHLHLHLHLHLHLHLHL
LHLHLHLHLHLHLHLHLHL
LHLHLHLHLHLHLHLHLHL
LHLHLHLHLHLHLHLHLHL

MHMHMHMHMHMHMHMHM
MHMHMHMHMHMHMHMHM
MHMHMHMHMHMHMHMHM
MHMHMHMHMHMHMHMHM
MHMHMHMHMHMHMHMHM
MHMHMHMHMHMHMHMHM
MHMHMHMHMHMHMHMHM
MHMHMHMHMHMHMHMHM
MHMHMHMHMHMHMHMHM
MHMHMHMHMHMHMHMHM
MHMHMHMHMHMHMHMHM
MHMHMHMHMHMHMHMHM
MHMHMHMHMHMHMHMHM
MHMHMHMHMHMHMHMHM
MHMHMHMHMHMHMHMHM
MHMHMHMHMHMHMHMHM
MHMHMHMHMHMHMHMHM
MHMHMHMHMHMHMHMHM

NHNHNHNHNHNHNHNHNHN
NHNHNHNHNHNHNHNHNHN
NHNHNHNHNHNHNHNHNHN
NHNHNHNHNHNHNHNHNHN
NHNHNHNHNHNHNHNHNHN
NHNHNHNHNHNHNHNHNHN
NHNHNHNHNHNHNHNHNHN
NHNHNHNHNHNHNHNHNHN
NHNHNHNHNHNHNHNHNHN
NHNHNHNHNHNHNHNHNHN
NHNHNHNHNHNHNHNHNHN
NHNHNHNHNHNHNHNHNHN
NHNHNHNHNHNHNHNHNHN
NHNHNHNHNHNHNHNHNHN
NHNHNHNHNHNHNHNHNHN
NHNHNHNHNHNHNHNHNHN
NHNHNHNHNHNHNHNHNHN
NHNHNHNHNHNHNHNHNHN

OHOHOHOHOHOHOHOHOHO
OHOHOHOHOHOHOHOHOHO
OHOHOHOHOHOHOHOHOHO
OHOHOHOHOHOHOHOHOHO
OHOHOHOHOHOHOHOHOHO
OHOHOHOHOHOHOHOHOHO
OHOHOHOHOHOHOHOHOHO
OHOHOHOHOHOHOHOHOHO
OHOHOHOHOHOHOHOHOHO
OHOHOHOHOHOHOHOHOHO
OHOHOHOHOHOHOHOHOHO
OHOHOHOHOHOHOHOHOHO
OHOHOHOHOHOHOHOHOHO
OHOHOHOHOHOHOHOHOHO
OHOHOHOHOHOHOHOHOHO
OHOHOHOHOHOHOHOHOHO
OHOHOHOHOHOHOHOHOHO
OHOHOHOHOHOHOHOHOHO

PHPHPHPHPHPHPHPHPHP
PHPHPHPHPHPHPHPHPHP
PHPHPHPHPHPHPHPHPHP
PHPHPHPHPHPHPHPHPHP
PHPHPHPHPHPHPHPHPHP
PHPHPHPHPHPHPHPHPHP
PHPHPHPHPHPHPHPHPHP
PHPHPHPHPHPHPHPHPHP
PHPHPHPHPHPHPHPHPHP
PHPHPHPHPHPHPHPHPHP
PHPHPHPHPHPHPHPHPHP
PHPHPHPHPHPHPHPHPHP
PHPHPHPHPHPHPHPHPHP
PHPHPHPHPHPHPHPHPHP
PHPHPHPHPHPHPHPHPHP
PHPHPHPHPHPHPHPHPHP
PHPHPHPHPHPHPHPHPHP
PHPHPHPHPHPHPHPHPHP

QHQHQHQHQHQHQHQHQHQ
QHQHQHQHQHQHQHQHQHQ
QHQHQHQHQHQHQHQHQHQ
QHQHQHQHQHQHQHQHQHQ
QHQHQHQHQHQHQHQHQHQ
QHQHQHQHQHQHQHQHQHQ
QHQHQHQHQHQHQHQHQHQ
QHQHQHQHQHQHQHQHQHQ
QHQHQHQHQHQHQHQHQHQ
QHQHQHQHQHQHQHQHQHQ
QHQHQHQHQHQHQHQHQHQ
QHQHQHQHQHQHQHQHQHQ
QHQHQHQHQHQHQHQHQHQ
QHQHQHQHQHQHQHQHQHQ
QHQHQHQHQHQHQHQHQHQ
QHQHQHQHQHQHQHQHQHQ
QHQHQHQHQHQHQHQHQHQ
QHQHQHQHQHQHQHQHQHQ

RHRHRHRHRHRHRHRHRHR
RHRHRHRHRHRHRHRHRHR
RHRHRHRHRHRHRHRHRHR
RHRHRHRHRHRHRHRHRHR
RHRHRHRHRHRHRHRHRHR
RHRHRHRHRHRHRHRHRHR
RHRHRHRHRHRHRHRHRHR
RHRHRHRHRHRHRHRHRHR
RHRHRHRHRHRHRHRHRHR
RHRHRHRHRHRHRHRHRHR
RHRHRHRHRHRHRHRHRHR
RHRHRHRHRHRHRHRHRHR
RHRHRHRHRHRHRHRHRHR
RHRHRHRHRHRHRHRHRHR
RHRHRHRHRHRHRHRHRHR
RHRHRHRHRHRHRHRHRHR
RHRHRHRHRHRHRHRHRHR
RHRHRHRHRHRHRHRHRHR

SHSHSHSHSHSHSHSHSHS
SHSHSHSHSHSHSHSHSHS
SHSHSHSHSHSHSHSHSHS
SHSHSHSHSHSHSHSHSHS
SHSHSHSHSHSHSHSHSHS
SHSHSHSHSHSHSHSHSHS
SHSHSHSHSHSHSHSHSHS
SHSHSHSHSHSHSHSHSHS
SHSHSHSHSHSHSHSHSHS
SHSHSHSHSHSHSHSHSHS
SHSHSHSHSHSHSHSHSHS
SHSHSHSHSHSHSHSHSHS
SHSHSHSHSHSHSHSHSHS
SHSHSHSHSHSHSHSHSHS
SHSHSHSHSHSHSHSHSHS
SHSHSHSHSHSHSHSHSHS
SHSHSHSHSHSHSHSHSHS
SHSHSHSHSHSHSHSHSHS

t=0

CL = {C, D}

S = {C}

S = {E}

EE

Instance 3
IGRP

OSPF
(110)

(100)

(120)

Instance 2
t=2

New CL = {D}

Instance 1
RIP

S = {D}Instance 1 EE

Instance 3
IGRP

OSPF

RIP

(110)

(100)

(120)

Instance 2

New CL = {E}

t=3

S = {E}

Instance 1 EE

Instance 3
IGRP

OSPF

RIP

(110)

(100)

(120)

Instance 2
t=4

New CL = {C}

S = {C} Instance 1 EE

Instance 3
IGRP

OSPF

RIP

(110)

(100)

(120)

Instance 2
t=5

New CL = { }

Instance 2

Instance 1 EE

Instance 3
IGRP

OSPF

RIP

(110)

(100)

(120)

Instance 1 EE

Instance 3
IGRP

OSPF

RIP

(110)

(100)

(120)

t=1

New CL = {D, E}

Instance 2

C, 90

90, D

D, 90

90, C

C, 90

90, D

D, 90

90, C

C, 90

90, C

C, 90

90, C

90, D

D, 90 D, 90

90, D

C, 90

90, C

D, 90

90, D

C, 90

90, C

D, 90

90, D

Fig. 15. Illustration of an activation sequence when the AD for C.1 and
D.1 are set to 90. The redistributions converge to a cycle-free state.

x mainly announces to y that it has a route to P . y does
not have a global view of the topology but only know that
x is the next-hop for P . [14], [15] studied properties for
vectoring algorithms and showed that strict monotonicity (SM)
was an important one. Monotonicity means that the weight
of a redistributed route should be larger than the one of
the initially received route. However, current RR does not
satisfy monotonicity. The AD value of a routing process can
be set to any value and consequently, at a same router, a
redistributed route may present a higher preference than the
initially received route.

B. An Approach Based on Dynamic Route Tag

Modern routing protocols (e.g., RIPv2, OSPFv2, EIGRP),
which support the CIDR format, allow an integer tag to be
associated with an external route. This tag was designed to
provide a label of the external route being redistributed. The
usages of this field were left out of the routing protocol
specifications and were to be specified in a separate document.

We propose to utilize this unused external route tag to
ensure that RR is strictly monotonous. The route tag should
carry a counter that is incremented by at least one when re-
injected from a routing instance to another one. The route
selection procedure needs to be upgraded to take the route
tag into consideration. When receiving multiple routes to a

11

same destination, a router should first consider the route tag.
Routes with lower route tag value should be preferred. Finally,
to address the count-to-infinity problem, existing solutions can
be adopted: a maximum counter value can be defined (RIP
defines the maximum count as 16 [16]) or hold down timers
[17] can be implemented.

Such modifications make RR SM [15]. Applying the frame-
work from [15], RR is well captured by the scope product
operator ([15], section 3.2): RR is used between the rout-
ing instances, and within each routing instance, the routing
instance’s routing protocol is applied. As long as this latter
algebra – i.e., the one used in each routing instance – is SM,
the resulting routing remains SM [15].

An important question meriting further investigation is how
to design new modifications to the RR procedure that not only
guarantee the correctness of the procedure but also preserve
most of the benefits offered by route redistribution. In order to
achieve this goal, we need to fully understand the operational
needs of the RR procedure first. To this end, empirical studies
of route redistribution usages in operational networks are
required.

VIII. RELATED WORK

Few documents address route redistribution. [18] and [19]
have short sections on routing protocol interactions. They
briefly describe the challenges and risks of route redistribution.
[20] is an IETF standard specifying the interaction between
OSPF and BGP/IDRP. However, the document is specific
to these 3 protocols and does not deal with other routing
protocols. [2] and [3] are vendor reports presenting possible
consequences of redistribution (such as sub-optimal routing,
routing loops or delayed convergence.) To prevent those unde-
sired effects, [2] recommends preventing information received
from a routing process u from being re-advertised back into u.
However, such an approach violates one of the goals of route
redistribution i.e., the ability for routing instances to back-up
each other in case of failures. [3] focuses on redistribution
between multiple instances of OSPF. The report mentions
that OSPF routes are susceptible to instabilities. A number
of solutions are proposed. Some of the approaches allow
partial backup but do not satisfy all objectives. When network
partitions happen within a routing instance, internal routers
still loose connectivity. Finally, [7], [8] and [9] are proprietary
extensions addressing the redistribution from BGP into specific
protocols (e.g., OSPF, EIGRP). However, these extensions can
still result in instabilities and do not address the redistributions
between IGP processes.

IX. CONCLUSION

Route redistribution continues to be a popular choice for
disseminating routes between routing protocols because it
is relatively easy to configure and it has the flexibility to
support a wide range of policy-based scenarios. However,
RR misconfigurations are also common and the consequences
include permanent routing loops and persistent route flaps.

This paper takes the position that most of the misconfig-
urations are due to a lack of understanding of the network

wide RR logic and provides an analytical model to address the
problem. The model precisely defines how a RR configuration
influences the route selection outcomes at different routers
and as such provides the first formal specification of the
RR procedure. Detailed applications of the model are also
presented. Not only can the model be used to explain why
loops may form and routes may oscillate for certain RR con-
figurations, it can also be used to derive sufficient conditions
for an instability-free RR configuration. The analytical results
give clues indicating that the current RR procedure may have
fundamental weaknesses and raise the question if it requires
non-trivial changes to the RR procedure to address these
weaknesses. The paper exposes this issue and proposes a set
of functional modifications as the first step towards deriving
a safe RR protocol.

X. ACKNOWLEDGMENTS

The authors thank John Gibson, Orathai Sukwong and
Marcin Pohl for their help in setting up the presented experi-
ments, and Sihyung Lee as well as Steve McManus for their
comments. This research was sponsored by the NSF under
both NeTS Grant CNS-0520210 and a Graduate Research
Fellowship. Views and conclusions contained in this document
are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the U.S. government.

REFERENCES

[1] D. Maltz, G. Xie, J. Zhan, H. Zhang, G. Hjalmtysson, and A. Greenberg,
“Routing Design in Operational Networks: A Look from the Inside,” in
Proc. ACM SIGCOMM, 2004.

[2] “Redistributing Routing Protocols,” Cisco, September 2006.
[3] “OSPF Redistribution Among Different OSPF Processes,” Cisco, Jan-

uary 2006.
[4] “What is Administrative Distance?” Cisco, March 2006.
[5] Dwyer, Chowbay, Pavlichek, Downing, Sonderegger, Thomas, and

Pavlichek, Juniper Networks Reference Guide: JUNOS Routing, Con-
figuration, and Architecture. Addison-Wesley, 2002.

[6] “OSPF Design Guide,” Cisco, April 2006.
[7] “Using OSPF in an MPLS VPN Environment,” Cisco, 2002.
[8] “EIGRP MPLS VPN PE-CE Site of Origin (SoO),” Cisco, 2003.
[9] “ERX Routing Protocols Configuration Guide, Vol. 2,” Juniper.

[10] L. Gao and J. Rexford, “Stable Internet Routing Without Global Coor-
dination,” in Proc. ACM SIGMETRICS, 2000.

[11] T. Griffin, F. B. Shepherd, and G. T. Wilfong, “The stable paths problem
and interdomain routing.” IEEE/ACM Trans. Netw., 2002.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, Second Edition. The MIT Press, 2001.

[13] F. Le and G. Xie, “On Guidelines for Safe Route Redistributions,” in
Proc. ACM SIGCOMM Internet Network Management Workshop, 2007.

[14] J. L. Sobrinho, “Network routing with path vector protocols: Theory
and applications,” in Proc. ACM SIGCOMM, 2003.

[15] T. G. Griffin and J. L. Sobrinho, “Metarouting,” in Proc. ACM SIG-
COMM, 2005.

[16] C. Hedrick, Routing Information Protocol, Request for Comments 1058,
1998.

[17] J. Doyle, OSPF and IS-IS: Choosing an IGP for Large-Scale Networks.
Addison-Wesley, 2005.

[18] F. B. (Editor), Requirements for IP Version 4 Routers, Request for
Comments 1812, 1995.

[19] J. T. Moy, OSPF Anatomy of An Internet Routing Protocol. Addison-
Wesley, 1998.

[20] K. Varadhan, S. Hares, and Y. Rekhter, BGP4/IDRP for IP—OSPF
Interaction, Request for Comments 1745, 1994.

12

