Shading

Flat shading
Gouraud shading
Phong shading
Flat Shading and Perception

- *Lateral inhibition*: exaggerates perceived intensity
- *Mach bands*: perceived “stripes” along edges
Icosahedron with Sphere Normals

- Gouraud shading vs flat shading effect
One Subdivision
Two Subdivisions

- Each time, multiply number of faces by 4
Three Subdivisions

- Reasonable approximation to sphere
Phong Shading Results

Michael Gold, Nvidia

Phong Lighting
Gouraud Shading

Phong Lighting, Phong Shading
Texture and other Mappings

- Texture Mapping
- Bump Mapping
- Displacement Mapping
- Environment Mapping
We *could* specify all texture coordinates by hand...

For each triangle in the model establish a corresponding region in the phototexture
Tools help us unroll an object to "paint" it

- www.uvmapper.com
Uses for Texture Mapping

Use texture to affect a variety of parameters

- **surface color** - radiance of each point on surface (Catmull 1974)
- **surface reflectance** - reflectance coefficients k_d, k_s, or n_{shiny}
- **normal vector** - bump mapping (Blinn 1978)
- **geometry** - displacement mapping
- **transparency** - transparency mapping (clouds) (Gardener 1985)
- **light source radiance** - environment mapping (Blinn 1978)
Radiance vs. Reflectance Mapping

Texture specifies (isotropic) radiance for each point on surface

Sphere w/ Uniform Diffuse coefficient + Radiance Map = Sphere w/ Radiance Map

Texture specifies diffuse color (k_d coefficients) for each point on surface
- three coefficients, one each for R, G, and B radiance channels

Sphere w/ Uniform Diffuse coefficient + Reflectance (k_d) Map = Sphere w/ Reflectance Map
Bump Mapping

- Basic texture mapping paints on to a smooth surface
- How do you make a surface look *rough*?
 - Option 1: model the surface with many small polygons
 - Option 2: perturb the normal vectors before the shading calculation

Real Bump

Fake Bump

Flat Plane

Sphere w/Diffuse Texture Map + Bump Map = Sphere w/Diffuse Texture + Bump Map
Bump Mapping

- We can perturb the normal vector without having to make any actual change to the shape.
- This illusion can be seen through—how?

Original model (5M) Simplified (500) Simple model with bump map
Bump Mapping

Greg Turk
Another Bump Mapping Example

Cylinder w/Diffuse Texture Map

Bump Map
Displacement Mapping

• Use texture map to displace each point on the surface
 – Texture value gives amount to move in direction normal to surface

• How is this different from bump mapping?
Environment Mapping

Specular reflections that mirror the environment
Environment Mapping

Specular reflections that mirror the environment

Cube is a natural intermediate object for a room
Environment Mapping: Cube Maps
Basics of Texture Mapping in OpenGL

Glubyte my_texels[512][512][3];
Gluint texID;

glGenTextures(1, &texID);
glBindTexture(GL_TEXTURE_2D, texID);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 512, 512, 0,
 GL_RGB, GL_UNSIGNED_BYTE, my_texels);

/* assign texture coordinates */
/* level, components, w, h, border, format, type, tarray */

/* level, components, w, h, border, format, type, tarray */

/* assign texture coordinates */
glEnable(GL_TEXTURE_2D);
 glBegin(GL_QUAD);
 glTexCoord2f(0.0, 0.0);
 glVertex3f(x1,y1,z1);
 glTexCoord2f(1.0, 0.0);
 glVertex3f(x2,y2,z2);
 glTexCoord2f(1.0,1.0);
 glVertex3f(x3,y3,z3);
 glTexCoord2f(0.0,1.0);
 glVertex3f(x4,y4,z4);
 glEnd();
 glDisable(GL_TEXTURE_2D);
Grungy details we’ve ignored

- Specify s or t out of range? Use `GL_TEXTURE_WRAP` in `glTexParameter` because many textures are carefully designed to repeat.

- Aliasing? Mapping doesn’t send you to the center of a texel. Can average nearest 2x2 texels using `GL_LINEAR`.

- Mipmapping: use textures of varying resolutions. 64x64 becomes 32x32, 16x16, 8x8, 4x4, 2x2 and 1x1 arrays with `gluBuild2Dmipmaps`.

![Image texture repeat, mirror, clamp, and border functions in action.](image)
Texture Generation

Photographs
Drawings
Procedural methods (2D or 3D)
(2D: stripe, wave, and noise patterns
3D: sculpting in marble and granite)
Procedural Methods

Reaction-Diffusion
Greg Turk, Siggraph '91
Solid Textures

• Have a 3-D array of texture values (e.g., a block of marble)

• In practice the map is often defined procedurally
 – No need to store an entire 3D array of colors
 – Just define a function to generate a color for each 3D point

• The most interesting solid textures are random ones

• Evaluate the texture coordinates in object coordinates - otherwise moving the object changes its texture!

• Ken Perlin's talk "Making Noise"

From: *An Image Synthesizer* by Ken Perlin, SIGGRAPH '85