Recitation 4:

OpenMP Programming

15-418 Parallel Computer Architecture and Programming

CMU 15-418/15-618, Spring 2020
Goals for today

- Learn to use Open MP

1. Sparse matrix-vector code
 - Understand “CSR” sparse matrix format
 - Simplest OpenMP features

2. Compare different parallel computing strategies
 - Find ways that work for irregular matrices

3. Code available in:
 /afs/cs.cmu.edu/academic/class/15418-s20/www/code/rec04/mvmul
Today: Matrix-vector multiplication

- \((n \times n) \times (n \times 1) \Rightarrow (n \times 1)\) output vector
- Output = dot-products of rows from \(A\) and the vector \(B\)
Matrix-vector multiplication

- Simple C++ implementation:

```cpp
/* Find element based on row-major ordering */
#define RM(r, c, width) ((r) * (width) + (c))

void matrixVectorProduct(int N, float *matA, float *vecB, float *vecC) {
    for (int i = 0; i < N; i++)
        float sum = 0.0;
    for (int k = 0; k < N; k++)
        sum += matA[RM(i, k, N)] * vecB[k];
    vecC[i] = sum;
}
```
Matrix-vector multiplication

- Our code is slightly refactored:

```c
typedef float data_t;
typedef unsigned index_t;

float rvp_dense_seq(dense_t *m, vec_t *x, index_t r) {
    index_t nrow = m->nrow;
    index_t rstart = r*nrow;
    data_t val = 0.0;
    for (index_t c = 0; c < nrow; c++)
        val += x->value[c] * m->value[rstart+c];
    return val;
}

void mvp_dense_seq(dense_t *m, vec_t *x, vec_t *y, rvp_dense_t rp_fun) {
    index_t nrow = m->nrow;
    for (index_t r = 0; r < nrow; r++) {
        y->value[r] = rp_fun(m, x, r);
    }
}
```

Row dot product (the inner loop over \(k \) in original code)

The outer loop over rows (over \(i \) in original code)
Thread parallelism with OpenMP

- OpenMP is supported by gcc
- Write standard C/C++ code
- “Decorate” your code with #pragmas
- We will cover only some of OpenMP’s features
Parallel Outer Loop

```c
void mvp_dense_mps(dense_t *m, vec_t *x, vec_t *y, rvp_dense_t rp_fun) {
    index_t nrow = m->nrow;

    #pragma omp parallel for schedule(static)
    for (index_t r = 0; r < nrow; r++) {
        y->value[r] = rp_fun(m, x, r);
    }
}
```

- Recruit multiple threads
- Have each do subrange of row indices
Understanding Parallel Outer Loop

```c
void mvp_dense_mps_impl(dense_t *m, vec_t *x, vec_t *y, rvp_dense_t rp_fun) {
    index_t nrow = m->nrow;
    #pragma omp parallel
    {
        // Following code executed by each thread
        index_t t = omp_get_thread_num();
        index_t tcount = omp_get_num_threads();
        index_t delta = (nrow+tcount-1)/tcount;
        index_t restart = t * delta;
        index_t rend = (t+1) * delta;
        if (rend > nrow) rend = nrow;
        for (index_t r = restart; r < rend; r++) {
            y->value[r] = rp_fun(m, x, r);
        }
    }
}
```

- Each thread \(t \) does its range of rows
Parallel Inner Loop

data_t rvp_dense_mpr(dense_t *m, vec_t *x, index_t r) {
 index_t nrow = m->nrow;
 index_t rstart = r*nrow;
 data_t val = 0.0;

 #pragma omp parallel for reduction(+:val)
 for (index_t c = 0; c < nrow; c++) {
 data_t mval = m->value[rstart+c];
 data_t xval = x->value[c];
 val += mval * xval;
 }
 return val;
}

- Recruit multiple threads
- Accumulate separate copies of val and combine

Partition range into blocks of size delta
Each thread accumulates its subrange of values
Combine values across threads
Benchmarking dense mat-vec

- Matrix: 256 x 256 (65,536 entries)
 - Sequential: 2.48 GF
 - Parallel Rows: 15.43 GF (6.22 X)
 - Parallel Columns: 4.90 GF (1.98 X)
 - Tasks are too fine-grained
Sparse matrix-vector multiplication

- What if A is mostly zeroes? (This is common)

- Idea: We should only compute on non-zeros in A

- \[\sum_k (i, k) \to C \]

- Need new **sparse** matrix representation
Compressed sparse-row (CSR) matrix format

- Dense matrix:
- CSR matrix:
Compressed sparse-row (CSR) matrix format

- Dense matrix:

- CSR matrix:
Compressed sparse-row (CSR) matrix format

- **Dense matrix:**

```
Row
6 2 4 1 2 9 3 1
```

- **CSR matrix:**

Values: 6 2 4 1 2 9 3 1

(Compact non-zeroes into dense format)
Compressed sparse-row (CSR) matrix format

- Dense matrix:

- CSR matrix:

 Values: 6 2 4 1 2 9 3 1
 Indices: 1

(Position corresponding to each value)
Compressed sparse-row (CSR) matrix format

- **Dense matrix:**

- **CSR matrix:**

 Values: 6 2 4 1 2 9 3 1

 Indices: 1 5

 (Position corresponding to each value)
Compressed sparse-row (CSR) matrix format

- **Dense matrix:**

- **CSR matrix:**

 Values: 6 2 4 1 2 9 3 1

 Indices: 1 5 0

 (Position corresponding to each value)
Compressed sparse-row (CSR) matrix format

- **Dense matrix:**

- **CSR matrix:**
 - Values: 6 2 4 1 2 9 3 1
 - Indices: 1 5 0 3 (Position corresponding to each value)
Compressed sparse-row (CSR) matrix format

- Dense matrix:

- CSR matrix:

Values: 6 2 4 1 2 9 3 1

Indices: 1 5 0 3 7 4 1 6 (Position corresponding to each value)
Compressed sparse-row (CSR) matrix format

- **Dense matrix:**

 ![Dense matrix diagram](image)

- **CSR matrix:**

 - **Values:** 6 2 4 1 2 9 3 1
 - **Indices:** 1 5 0 3 7 4 1 6
 - **Offsets:** (Where each row starts)
Compressed sparse-row (CSR) matrix format

- Dense matrix:

- CSR matrix:

Values: 6 2 4 1 2 9 3 1
Indices: 1 5 0 3 7 4 1 6
Offsets: 0 (Where each row starts)
Compressed sparse-row (CSR) matrix format

- Dense matrix:

- CSR matrix:

Values: 6 2 4 1 2 9 3 1
Indices: 1 5 0 3 7 4 1 6
Offsets: 0 2 (Where each row starts)
Compressed sparse-row (CSR) matrix format

- Dense matrix:

- CSR matrix:

 Values: 6 2 4 1 2 9 3 1

 Indices: 1 5 0 3 7 4 1 6

 Offsets: 0 2 5

(Where each row starts)
Compressed sparse-row (CSR) matrix format

- Dense matrix:

- CSR matrix:

 Values: 6 2 4 1 2 9 3 1
 Indices: 1 5 0 3 7 4 1 6
 Offsets: 0 2 5 6 (Where each row starts)
Compressed sparse-row (CSR) matrix format

- Dense matrix:

- CSR matrix:

 Values: 6 2 4 1 2 9 3 1
 Indices: 1 5 0 3 7 4 1 6
 Offsets: 0 2 5 6 8

(Where each row starts)

Dummy row...explained momentarily
Compressed sparse-row (CSR) matrix format

- Dense matrix:

- CSR matrix:

 Values: 6 2 4 1 2 9 3 1 (Compact non-zeros into dense format)

 Indices: 1 5 0 3 7 4 1 6 (Position corresponding to each value)

 Offsets: 0 2 5 6 8 (Where each row starts)
Sparse matrix-vector multiplication

data_t rvp_csr_seq(csr_t *m, vec_t *x, index_t r) {
 index_t idxmin = m->rowstart[r];
 index_t idxmax = m->rowstart[r+1];
 data_t val = 0.0;
 for (index_t idx = idxmin; idx < idxmax; idx++) {
 index_t c = m->cindex[idx];
 data_t mval = m->value[idx];
 data_t xval = x->value[c];
 val += mval * xval;
 }
 return val;
}

/* the outer loop (across rows) doesn’t change */
void mvp_csr_seq(csr_t *m, vec_t *x, vec_t *y, rvp_csr_t rp_fun) {
 index_t nrow = m->nrow;
 for (index_t r = 0; r < nrow; r++) {
 y->value[r] = rp_fun(m, x, r);
 }
}
Benchmarking sparse mat-vec

- Uniform Matrix: 16384 x 16384 (65,536 nonzero entries)
 - Each row contains exactly nnz/nrow = 4 nonzero elements
 - Sequential: 2.45 GF
 - Parallel Rows: 13.87 GF (5.66 X)
 - Parallel Columns: 0.01 GF (Oops)
 - Only 4 nonzero elements / row
Benchmarking sparse mat-vec

- Skewed Matrix: 16384 x 16384 (65,536 nonzero entries)
 - All nonzeros in first nnz/nrow = 4 rows
 - Sequential: 1.56 GF
 - Parallel Rows: 2.07 GF (1.33 X)
 - Parallel Columns: 0.11 GF (Oops, but better than before!)
 - Still too fine-grained
A “Data-Oriented” Strategy

- Run in parallel over all nonzero entries
 - Have each product update the appropriate row value
Compressed sparse-row (CSR) matrix format #2

- **Dense matrix:**

- **CSR matrix:**

 - Values: 6 2 4 1 2 9 3 1
 - Column Indices: 1 5 0 3 7 4 1 6
 - Row Indices: 0 0 1 1 1 2 3 3

 (Compact non-zeroes into dense format)

 (Column corresponding to each value)

 (Row corresponding to each value)
Data-oriented matrix-vector multiplication (atomic)

```c
void full_mvp_csr_atomic(csr_t *m, vec_t *x, vec_t *y) {
    index_t nnz = m->nnz;
    zero_vector(y);
    #pragma omp parallel for
    for (index_t idx = 0; idx < nnz; idx++) {
        data_t mval = m->value[idx];
        index_t r = m->rindex[idx];
        index_t c = m->cindex[idx];
        data_t xval = x->value[c];
        data_t prod = mval * xval;
        #pragma omp atomic
        y->value[r] += prod;
    }
}
```

- Require atomic updating of each value of y

Partition all nonzero data into blocks

Each thread accumulates partial products for a block

Must use atomic addition to avoid races
Benchmarking sparse mat-vec

- Skewed Matrix: 16384 x 16384 (65,536 nonzero entries)
 - All nonzeros in first nnz/nrow = 4 rows
 - Sequential: 1.56 GF
 - Parallel Rows: 2.07 GF (1.33 X)
 - Parallel Columns: 0.11 GF (Oops)
 - Still too fine-grained
 - Data par, atomic 0.05 GF (Oops)
 - Atomic updating is expensive!
Data-oriented matrix-vector multiplication (separate accums)

Strategy ($T = \text{number of threads}$)

- Have T separate vectors
- Parallel over nonzero data:
 - Each thread zeros its vector
 - Each thread accumulates results in own vector
- Parallel over rows:
 - Sum vector values for each row
- Properties
 - No need for synchronization
 - Extra space and work
Data-oriented matrix-vector multiplication (separate accums)

```c
void full_mvp_csr_basic(csr_t *m, vec_t *x, vec_t *y) {
    index_t nrow = m->nrow;
    index_t nnz = m->nnz;
    #pragma omp parallel
    {
        index_t tid = omp_get_thread_num();
        index_t tcount = omp_get_num_threads();
        vec_t *svec = scratch_vector[tid];
        zero_vector(svec);
        #pragma omp for
        for (index_t idx = 0; idx < nnz; idx++) {
            data_t mval = m->value[idx];
            index_t r = m->rindex[idx];
            index_t c = m->cindex[idx];
            data_t xval = x->value[c];
            data_t prod = mval * xval;
            svec->value[r] += prod;
        }
        #pragma omp for
        for (index_t r = 0; r < nrow; r++) {
            data_t val = 0.0;
            for (index_t t = 0; t < tcount; t++)
                val += scratch_vector[t]->value[r];
            y->value[r] = val;
        }
    }
}
```

Scratch vectors allocated at startup
Partition all nonzero data into blocks
Each thread accumulates partial products for block in separate vector
Recruit threads to sum values in the T different vectors
Benchmarking sparse mat-vec

- Skewed Matrix: 16384 x 16384 (65,536 nonzero entries)
 - All nonzeros in first nnz/nrow = 4 rows
 - Sequential: 1.56 GF
 - Parallel Rows: 2.07 GF (1.33 X)
 - Parallel Columns: 0.11 GF (Oops)
 - Still too fine-grained
 - Data par, atomic 0.05 GF (Oops)
 - Atomic updating is expensive!
 - Data par, sep. 3.65 GF (2.34 X)
Data-oriented matrix-vector multiplication (separate accums)

Observation:
- Accumulating in memory is more expensive than in registers

  ```
  val += prod;          // Fast
  svec->value[r] += prod; // Slow
  ```
- Data will have long runs with same row
 - Accumulate in register until row changes
Data-oriented matrix-vector multiplication (register accum)

```c
index_t tid = omp_get_thread_num();
index_t tcount = omp_get_num_threads();
vec_t *svec = scratch_vector[tid];
zero_vector(svec);
data_t val = 0.0;
index_t last_r = 0;
#pragma omp for nowait
for (index_t idx = 0; idx < nnz; idx++) {
    data_t mval = m->value[idx];
    index_t r = m->rindex[idx];
    index_t c = m->cindex[idx];
    data_t xval = x->value[c];
    data_t prod = mval * xval;
    if (r == last_r) {
        val += prod;
    } else {
        svec->value[last_r] = val;
        last_r = r;
        val = prod;
    }
}
svec->value[last_r] = val;
#pragma omp barrier
```

Partition all nonzero data into blocks
Each thread accumulates partial products in register
Store value to separate vector when change rows
Must store final row value
Explicit barrier synch required
Benchmarking sparse mat-vec

- Skewed Matrix: 16384 x 16384 (65,536 nonzero entries)
 - All nonzeros in first nnz/nrow = 4 rows
 - Sequential: 1.56 GF
 - Parallel Rows: 2.07 GF (1.33 X)
 - Parallel Columns: 0.11 GF (Oops)
 - Still too fine-grained
 - Data par, atomic 0.05 GF (Oops)
 - Atomic updating is expensive!
 - Data par, sep. 3.65 GF (2.34 X)
 - Data par, reg acc 4.64 GF (2.97 X)
Another use for accumulating in registers

- Combine register updating with atomic updating
 - Accumulate values in register
 - When write to memory, do so by atomic addition to row in y
Data-oriented matrix-vector multiplication (register accum, atomic updates)

```c
void full_mvp_csr_opt_atomic(csr_t *m, vec_t *x, vec_t *y) {
    index_t nnz = m->nnz;
    zero_vector(y);
    #pragma omp parallel
    {
        data_t val = 0.0;
        index_t last_r = 0;
        #pragma omp for nowait
        for (index_t idx = 0; idx < nnz; idx++) {
            data_t mval = m->value[idx];
            index_t r = m->rindex[idx];
            index_t c = m->cindex[idx];
            data_t xval = x->value[c];
            data_t prod = mval * xval;
            if (r == last_r) {
                val += prod;
            } else {
                #pragma omp atomic
                y->value[last_r] += val;
                last_r = r;
                val = prod;
            }
        }
        #pragma omp atomic
        y->value[last_r] += val;
    }
}
```

- Partition all nonzero data into blocks
- Each thread accumulates partial products in register
- Eliminate implicit barrier, since implicit one at end of `omp parallel`
- Atomically add value to destination vector when change rows
- Need to explicitly zero-out destination vector
- Must add final row value

CMU 15-418/15-618, Spring 2020
Bencharking sparse mat-vec

- Skewed Matrix: 16384 x 16384 (65,536 nonzero entries)
 - All nonzeros in first nnz/nrow = 4 rows
 - Sequential: 1.56 GF
 - Parallel Rows: 2.07 GF (1.33 X)
 - Parallel Columns: 0.11 GF (Oops)
 - Still too fine-grained
 - Data par, atomic 0.05 GF (Oops)
 - Atomic updating is expensive!
 - Data par, sep. 3.65 GF (2.34 X)
 - Data par, reg acc 4.64 GF (2.97 X)
 - Data par, reg atom 9.99 GF (6.40 X)
Benchmarking sparse mat-vec

- Uniform Matrix: 16384 x 16384 (65,536 nonzero entries)
 - nnz/nrow = 4 nonzero entries/row
 - Sequential: 2.45 GF
 - Parallel Rows: 13.87 GF (5.66 X)
 - Parallel Columns: 0.01 GF (Oops)
 - Still too fine-grained
 - Data par, atomic: 1.76 GF (Oops)
 - Atomic updating is expensive!
 - Data par, sep: 5.46 GF (2.29 X)
 - Data par, reg acc: 5.79 GF (2.36 X)
 - Data par, reg atom: 5.06 GF (2.07 X)
Some Observations

- Parallel performance more sensitive to data characteristics than sequential
 - Sequential: 1.56–2.48 GF
 - Parallel: 5.11–15.43 GF

- Easy to get parallelism out of highly structured data
 - Dense matrices
 - Sparse but regular

- But, if data sparse & irregular, need to find technique that is effective

- Need to try different approaches
Common Mistake #1

```c
void mvp_dense_mps_impl(dense_t *m, vec_t *x, vec_t *y, rvp_dense_t rp_fun)
{
    index_t nrow = m->nrow;
    index_t t, tcount, delta, rstart, rend;
    #pragma omp parallel
    {
        // Following code executed by each thread
        t = omp_get_thread_num();
        tcount = omp_get_num_threads();
        delta = (nrow+tcount-1)/tcount;
        rstart = t * delta;
        rend = (t+1) * delta;
        if (rend > nrow) rend = nrow;
        for (index_t r = rstart; r < rend; r++) {
            y->value[r] = rp_fun(m, x, r);
        }
    }
}
```

- Variables outside of parallel are global
- Either wrong answers or poor performance

Variables declared outside scope of `omp parallel` are global to all threads.
Common Mistake #2

```c
data_t rvp_dense_mpr(dense_t *m, vec_t *x, index_t r) {
    index_t nrow = m->nrow;
    index_t idx = r*nrow;
    data_t val = 0.0;

    #pragma omp parallel for reduction(+:val)
    for (index_t c = 0; c < nrow; c++) {
        data_t mval = m->value[idx++];
        data_t xval = x->value[c];
        val += mval * xval;
    }
    return val;
}
```

- Low-level optimization can often introduce sequential dependency
Common Mistake #3

```c
void full_mvp_csr_allocate(csr_t *m, vec_t *x, vec_t *y) {
    index_t nrow = m->nrow;
    index_t nnz = m->nnz;
    // Allocate new scratch vectors
    vec_t *scratch_vector[MAXTHREAD];
    #pragma omp parallel
    {
        index_t t = omp_get_thread_num();
        index_t tcount = omp_get_num_threads();
        scratch_vector[t] = new_vector(nrow);
    }
    ...  
```

- Allocate all data structures beforehand
 - Typical computation uses them repeatedly

Scratch vectors allocated every time multiplication performed
Relation to Assignment 3

- **Graphs**
 - 28,800 nodes
 - 171,400–286,780 edges
 - Degrees 5–4,899
 - Similar to sparse, irregular matrix

- **Properties**
 - Cannot assume FP arithmetic is associative
 - Limits combining strategies
 - Integer addition is associative
 - Counting rats