Lecture 8:

Instruction-Level
Parallelism

15-418 Parallel Computer Architecture and Programming
CMU 15-418/15-618, Fall 2025



Many kinds of processors

CPU GPU FPGA Etc.

Why so many? What differentiates these processors¢
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Why so many kinds of processors?

Each processor is designed for different kinds of programs
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o
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= CPUs

= “Sequential” code —i.e., single / few threads

" GPUs

" Programs with lots of independent work = “Embarrassingly parallel”

" Many others: Deep neural networks, Digital signal processing, Etc.
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Recall from last time:
ILP & pipelining tapped out... why?
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Parallelism pervades architecture

= Speeding up programs is all about parallelism
= 1) Find independent work

= 2) Execute it in parallel
= 3) Profit

= Key questions:
= Where is the parallelism?

" Whose job is it to find parallelism?



Where is the parallelism?

Different processors take radically different approaches

= CPUs: Instruction-level parallelism
= Implicit

= Fine-grain

= GPUs: Thread- & data-level parallelism
= Explicit
= Coarse-grain



Whose job to find parallelism?

Different processors take radically different approaches

= CPUs: Hardware dynamically schedules instructions

» Expensive, complex hardware = Few cores (tens)

= (Relatively) Easy to write fast software

= GPUs: Software makes parallelism explicit

= Simple, cheap hardware =» Many cores (thousands)
= (Often) Hard to write fast software



Visualizing these differences
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Visualizing these differences

" Pentium 4

“Northwood” (2002)

= Highlighted areas
actually execute
instructions

=>» Most area spent
on scheduling

(not on executing the
program)




Visualizing these differences
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Visualizing these differences

= NVIDIA H100
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Today you will learn...

How CPUs exploit ILP to speed up sequential code

= Key ideas:
® Pipelining & Superscalar: Work on multiple instructions at once

= Qut-of-order execution: Dynamically schedule instructions
whenever they are “ready”

= Speculation: Guess what the program will do next to discover
more independent work, “rolling back” incorrect guesses

= CPUs must do all of this while preserving the illusion that
instructions execute in-order, one-at-a-time



In other words... Today is about:
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Buckle up!

...But please ask questions!
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Example:
Polynomial evaluation

int poly(int *coef,
int terms, int x) {
int power = 1;
int value = 0;
for (int j = 0; j < terms; j++) {
value += coef[j] * power;
power ¥*= X;
}

return value;



Example:
Polynomial evaluation
=" Compiling on ARM poly:
cmp
ble
int poly(int *coef, push
: : mov
int terms, int x) { ~dd
int power = 1; movs
int value = 0; LQ?VS
for (int j = 0; j < terms; j++) { 1dr
value += coef[j] * power; cmp
. mla
power *= X; mul
} bne
return value; pop
bx
} L4:
movs

CMU 15-418/15-618, Fall 2025 bx

rOo: value
rl: &coef[terms]
r2: X
r3: &coef[j]
r4: power
r5: coef[j]
rl, #0

.L4

{r4, r5}

r3, ro

rl, rO, rl, 1s1 #2
r4, #1

ro, #0

r5, [r3], #4
rl, r3

ro, r4, r5, roO
rd, r2, r4

.L3

{r4, r5}

Ir

ro, #0

Tr




rO: value
rl: &coef[terms]
Example: "2: x
. . r3: &coef[j]
Polynomial evaluation rd: power
r5: coef[j]
= Compiling on ARM poly: o
cmp rl, #0 -g
ble .L4 o
int poly(int *coef, push {r4, r5} a
: . mov r3, ro
_ IS Sy TS ) add rl, rO, rl, T1s1 #2
int power = 1; movs r4, #1
int value = 0; Lgovs ROEED
for (int j = 0; J < terms; j++) { ' 1&r r5, [r3], #4 c
value += coef[j] * power; cmp rl, r3 %
ower *— x: mla ro, r4, r5, roO o
g - mu’l r4, r2, r4 =
} bne L3
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Example:
Polynomial evaluation

ro:
: &coef[terms]
r:
r3:
r4:
rs5:

value

X
&coef[7]
power
coef[j]

= Compiling on ARM

for (int j = 0; j < terms; j++) {

value += coef[j] * power;

power *= X;

} @

.L3:
T1dr r5, [r3], #4 // r5 <- coef[j]; j++
cmp rl, r3 // compare: j < terms?
mla rO, r4, r5, rO // value += r5 * power
mul r4d, r2, r4 // power *= X
bne .L3 // repeat?
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(two operations)

(mul + add)




Example:
Polynomial evaluation

= Executing poly(A, 3, x)

cmp rl, #0

ble . L4

push {r4, r5}

mov r3, ro

add rl, rO, rl, Tsl #2
Mmovs r4, #1

movs ro, #0

Tdr r5, [r3], #4
cmp rl, r3

mla ro, r4, r5, r0
mul rd, r2, r4

bne .L3



Example:
Polynomial evaluation

= Executing poly(A, 3, x)

- cmp rl, #0 =
ble . L4 £
push {r4, r5} E
mov r3, ro
add rl, rO, rl, Isl #2
Movs r4, #1
movs ro, #0
1dr r5, [r3], #4 S
cmp rl, r3 5
mla ro, r4, r5, rO E
mul rd, r2, r4 o
bne .L3 4
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Example:
Polynomial evaluation

= Executing poly(A, 3, x)

cmp
ble
push
mov
add
movs
movs
Tdr
cmp
mla

rl, #0

. L4

{r4, r5}

r3, ro

rl, rO, rl,

r4, #1

ro, #0

r5, [r3], #4

rl, r3

ro, r4, r5,
r2, r4

Tdr
cmp
mla
mul
bne
Tdr
cmp
mla
mul
bne

pop
bx

Preamble

—
n

—
$
N)

ro
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rs5,
rl,
ro,

.L3
rs5,
rl,
ro,
r4,
.L3
{r4,

[r3], #4
r3

r4, rS5,
r2, r4

[r3], #4
r3

rd, r5,
r2, r4

r5%

ro

ro

J=2 iteration J=1 iteration

Fini



Example:
Polynomial evaluation

= Executing poly(A, 3, x)

cmp
ble
push
mov
add
movs
movs
Tdr
cmp
mla
mul
bne

rl, #0 3
L4 E mp 1dr
{r4, r5} E cmp
r3, ro mla
rl, rO, rl, 1sl #2 mul
r4, #1 bne
ro, #0 Tdr
r5, [r3], #4 cmp
rl, r3 mla
ro, r4, r5, rO mul
r2, r4 bne
pop
bx
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rs5,
rl,
ro,

.L3
rs5,
rl,
ro,
r4,
.L3
{r4,

[r3], #4
r3

r4, rS5,
r2, r4

[r3], #4
r3

rd, r5,
r2, r4

r5%

ro

ro

J=2 iteration J=1 iteration

Fini



The software-hardware boundary

" The instruction set architecture (ISA) is a functional
contract between hardware and software

" [t says what each instruction does, but not how
= Example: Ordered sequence of x86 instructions

= A processor’s microarchitecture is how the ISA is
implemented

Arch : tArch :: Interface : Implementation



Simple CPU model

= Execute instructions in program order

= Divide instruction execution into stages, e.g.:
= 1. Fetch — get the next instruction from memory
= 2. Decode — figure out what to do & read inputs
= 3. Execute — perform the necessary operations
» 4. Commit — write the results back to registers / memory

" (Real processors have many more stages)



Evaluating polynomial on the
simple CPU model

-'Idr r5, [r3], #4

cmp rl, r3

mla rO, r4, r5, roO CPU

mul rd, r2, r4

bne .L3 Decode Execute Commit
T1dr r5, [r3], #4

cmp rl, r3

mla rO, r4, r5, roO

mul r4, r2, r4

bne .L3
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Evaluating polynomial on the
simple CPU model

-1dr r5, [r3], #4

cmp rl, r3

mla rO, r4, r5, roO CPU

mul rd, r2, r4

bne .L3 Decode Execute Commit
T1dr r5, [r3], #4

cmp rl, r3

mla rO, r4, r5, roO

mul rd, r2, r4

bne L3 1. Read “Idr r5, [r3] #4”

from memory
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Evaluating polynomial on the
simple CPU model

-1dr r5, [r3], #4

cmp rl, r3

mla rO, r4, r5, roO CPU

mul rd, r2, r4

bne .L3 Decode Execute Commit
1dr r5, [r3], #4 1dr

cmp rl, r3

mla rO, r4, r5, roO

mul rd, r2, r4

bne L3 2. Decode ‘“Idr r5, [r3] #4”

and read input regs
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Evaluating polynomial on the
simple CPU model

-1dr r5, [r3], #4

cmp rl, r3

mla rO, r4, r5, roO CPU

mul rd, r2, r4

bne .L3 Decode Execute Commit
1dr r5, [r3], #4 1dr

cmp rl, r3

mla rO, r4, r5, roO

mul rd, r2, r4

bne L3 3. Load memory at r3 and

compute r3 + 4
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Evaluating polynomial on the
simple CPU model

-1dr r5, [r3], #4

cmp rl, r3

mla rO, r4, r5, roO CPU

mul rd, r2, r4

bne .L3 Decode Execute Commit
1dr r5, [r3], #4 T1dr
cmp rl, r3

mla rO, r4, r5, roO

mul rd, r2, r4

bne .L3

4. Write values
into regs r5 and r3
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Evaluating polynomial on the
simple CPU model

T1dr r5, [r3], #4

cmp rl, r3

mla rO, r4, r5, roO CPU

mul rd, r2, r4

bne .L3 Decode Execute Commit
T1dr r5, [r3], #4

cmp rl, r3

mla rO, r4, r5, roO

mul r4, r2, r4

bne .L3
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Evaluating polynomial on the
simple CPU model

T1dr r5, [r3], #4

cmp rl, r3

mla rO, r4, r5, roO CPU

mul rd, r2, r4

bne .L3 Decode Execute Commit
T1dr r5, [r3], #4 cmp

cmp rl, r3

mla rO, r4, r5, roO

mul r4, r2, r4

bne .L3
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Evaluating polynomial on the
simple CPU model

T1dr r5, [r3], #4

cmp rl, r3

mla rO, r4, r5, roO CPU

mul rd, r2, r4

bne .L3 Decode Execute Commit
T1dr r5, [r3], #4 cmp

cmp rl, r3

mla rO, r4, r5, roO

mul r4, r2, r4

bne .L3
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Evaluating polynomial on the
simple CPU model

T1dr r5, [r3], #4

cmp rl, r3

mla rO, r4, r5, roO CPU

mul rd, r2, r4

bne .L3 Decode Execute Commit
T1dr r5, [r3], #4 cmp
cmp rl, r3

mla rO, r4, r5, roO

mul r4, r2, r4

bne .L3

CMU 15-418/15-618, Fall 2025



Evaluating polynomial on the
simple CPU model

T1dr r5, [r3], #4

cmp rl, r3

mla rO, r4, r5, roO CPU

mul rd, r2, r4

bne .L3 Decode Execute Commit
T1dr r5, [r3], #4

cmp rl, r3

mla rO, r4, r5, roO

mul r4, r2, r4

bne .L3
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Evaluating polynomial on the
simple CPU model

How fast is this processor?

1 ns Latency? Throughput?
I_A_\

Fetch | 1dr cmp mla
Decode 1dr cmp mla
Execute ldr cmp
Commit ldr cmp

\ K J\
Y Y
Latency = 4 ns / instr Throughput = 1 instr / 4 ns
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Simple CPU is very wasteful
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Pipelining



Pipelining keeps CPU busy through
instruction-level parallelism

" |dea: Start on the next instr’'n immediately

Tdr r5, [r3], #4

cmp rl, r3 // \\
mla rO, r4, r5, roO

mul rd, r2, r4

bne L3 Fetch Decode Execute Commit
Tdr r5, [r3], #4 ldr

cmp rl, r3

mla ro, r4, r5, roO

mul r4, r2, r4 Q@ "4

bne .L3



Pipelining keeps CPU busy through
instruction-level parallelism

" |dea: Start on the next instr’'n immediately

Tdr r5, [r3], #4

cmp rl, r3 @ N
mla rO, r4, r5, roO

mul r4, r2, r4

bne L3 Fetch Decode Execute Commit
Tdr r5, [r3], #4 cmp ldr

cmp rl, r3

mla ro, r4, r5, roO

mul r4, r2, r4 @ "4

bne .L3



Pipelining keeps CPU busy through
instruction-level parallelism

" |dea: Start on the next instr’'n immediately

Tdr r5, [r3], #4

cmp rl, r3 @ N
mla rO, r4, r5, roO

mul r4d, r2, r4

bne L3 Fetch Decode Execute Commit
1dr r5, [r3], #4 mla cmp 1dr

cmp rl, r3

mla ro, r4, r5, roO

mul r4, r2, r4 Q “ 4

bne .L3



Pipelining keeps CPU busy through
instruction-level parallelism

" |dea: Start on the next instr’'n immediately

Tdr r5, [r3], #4

cmp rl, r3 // \\
mla rO, r4, r5, roO

mul rd, r2, r4

bne L3 Fetch Decode Execute Commit
1dr r5, [r3], #4 mu mla cmp Tdr
cmp rl, r3

mla ro, r4, r5, roO

mul r4, r2, r4 Q “ 4

bne .L3



Pipelining keeps CPU busy through
instruction-level parallelism

" |dea: Start on the next instr’'n immediately

Tdr r5, [r3], #4

cmp rl, r3 // \\
mla rO, r4, r5, roO

mul rd, r2, r4

bne L3 Fetch Decode Execute Commit
1dr r5, [r3], #4 bne mul mla cmp
cmp rl, r3

mla ro, r4, r5, roO

mul r4, r2, r4 Q “ 4

bne .L3



Pipelining keeps CPU busy through
instruction-level parallelism

" |dea: Start on the next instr’'n immediately

Tdr r5, [r3], #4

cmp rl, r3 // \\
mla ro, r4, r5, roO

mul r4, r2, r4

bne L3 Fetch Decode Execute Commit
Tdr r5, [r3], #4 Tdr bne mu mla
cmp rl, r3

mla ro, r4, r5, roO

mul r4, r2, r4 Q “ 4

bne .L3



Evaluating polynomial on the

pipelined CPU

1 ns

How fast is this processor?

Latency? Throughput?

—
Fetch | ldr|cmp|mla|mul |bne| ldr|cmp|mla|mul |bne
Decode Idr|cmp |mla|mul|bne| ldr|cmp|mla|mul
Execute ldr | cmp |{mla|mul|bne| ldr|cmp|mla
Commit ldr | cmp |mla|mul | bne| 1dr | cmp

Latency = 4 ns / instr
CMU 15-418/15-618, Fall 2025

Throughput = 1 instr / ns

4X speedup!




Speedup achieved through
pipeline parallelism

) TIME

Processor works on 4

instructions at a time

Fetch | ldr|cmp|mla|mul |bne| 1drf| cmp imla|mul | bne
Decode Idr|cmp |mla|mul | bnel 1dr |jcmp |mla|mul
Execute Idr | cmp |{mla|mul} bnel1dr|cmp|mla
Commit ldr | cmp | mla| mul fbne | Tdr | cmp
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Limitations of pipelining

" Parallelism requires independent work

" QQ: Are instructions independent?

= A: No! Many possible hazards limit parallelism...



Data hazards

1dr ra,
cmp rc,

rd

[rb]l, #4 // ra & Memoryl[rb]; rb €« rb + 4
// rc € rd == re

Q: When can the CPU pipeline the cmp behind 1dr?

Fetch | Idr | cmp
Decode ldr | cmp
Execute l1dr | cmp
Commit l1dr | cmp
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= A: When they use

different registers
= Specifically, when
cmp does not read

any data written
by 1dr

=" E.g., rb != rd



Dealing with data hazards:
Stalling the pipeline

= Cannot pipeline cmp (1dr writes r3)

- 1dr r5,<[r3], #4

cmp rl,mr3

mla rO, r4, r5, roO CPU

mul rd, r2, r4

bne .L3 Decode Execute Commit
T1dr r5, [r3], #4

cmp rl, r3

mla rO, r4, r5, roO

mul rd, r2, r4

bne .L3
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Dealing with data hazards:
Stalling the pipeline

= Cannot pipeline cmp (1dr writes r3)

1dr r5,<[r3], #4
- cmp rl,mr3
mla rO, r4, r5, roO CPU
mul rd, r2, r4
bne .L3 Decode Execute
1dr r5, [r3], #4 ldr
cmp rl, r3
mla rO, r4, r5, roO
mul rd, r2, r4
bne .L3
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Commit




Dealing with data hazards:
Stalling the pipeline

= Cannot pipeline cmp (1dr writes r3)

1dr

r5,,.[r3], #4
rl,(rB

ro,
r4,
.L3

rs,
rl,
ro,
r4,
.L3

rd, r5,
r2, r4

[r3], #4
r3

r4, r5,
r2, r4

ro CPU
Decode Execute Commit
cmp 1dr
ro
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‘m1a rO, r4, r5, roO

Dealing with data hazards:
Stalling the pipeline

= Cannot pipeline cmp (1dr writes r3)

1dr r5,<[r3], #4
cmp rl,mr3

CPU
mul rd, r2, r4
bne .L3 Decode Execute Commit
1dr r5, [r3], #4 cmp <::) 1dr
cmp rl, r3
mla rO, r4, r5, roO

mul rd, r2, r4
bne .L3 Inject a “bubble” (NOP)
into the pipeline
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Dealing with data hazards:
Stalling the pipeline

= Cannot pipeline cmp (1dr writes r3)

1dr r5,<[r3], #4

cmp rl, r3

mla rO, r4, r5, roO CPU

mul rd, r2, r4

bne .L3 Decode Execute Commit
1dr r5, [r3], #4 mla cmp O
cmp rl, r3

mla rO, r4, r5, roO

mul rd, r2, r4

bne .L3 cmp proceeds once 1dr
has committed
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Stalling degrades performance

Processor works on 3
instructions at a time

Fetch | ldr Idr|{cmp | mla|mul
Decode bne | Idr | cmp | mla
Execute mla|mul | bne| 1dr
Commit cmp |mla|mul | bne

= But stalling is sometimes unavoidable

= E.g., long-latency instructions (divide, cache miss)
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Dealing with data hazards:
Forwarding data

" Wait a second... data is available after Execute!

CPU

Decod e Execute Commi'r
r3+4
1dr

" Forwarding eliminates many (not all) pipeline stalls
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Speedup achieved through
pipeline parallelism

Processor works on 4

instructions at a time ©

Fetch | 1dr | cmp|mla Tdr | cmp | mla | mul | bne
Decode ldr | cmp bne| Idr | cmp | mla|mul
Execute ldr mul | bne| 1dr | cmp | mla
Commit mla|mul | bne| 1dr | cmp
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Pipelining is not freel

®* Q: How well does forwarding scale?

= A: Not well... many forwarding paths in deep &
complex pipelines

CPU

Decode @ Cormmit
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Control hazards + Speculation

" Programs must appear to execute in program order
=>» All instructions depend on earlier ones

® Most instructions implicitly continue at the next...

" But branches redirect execution to new location



Dealing with control hazards:
Flushing the pipeline

" What if we always fetch the next instruction?

1dr r5, [r3], #4
cmp rl, r3

mla rO, r4, r5, roO
mul rd, r2, r4

- bne .L3

\

Static instruction sequence
(i.e., program layout in memory)

CPU
Decode Execute Commit
mu'l mla cmp
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Dealing with control hazards:
Flushing the pipeline

" What if we always fetch the next instruction?

1dr r5, [r3], #4
cmp rl, r3
mla rO rd, r5, rO

CPU
mu r2, r4
bne Decode Execute Commit
"_ re | ml | mla

Static instruction sequence
(i.e., program layout in memory)
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Dealing with control hazards:
Flushing the pipeline

" What if we always fetch the next instruction?

1dr r5, [r3], #4
cmp rl, r3

mla rO r4, r5, r0
mul r2, r4

bne

->_

CPU
Decode Execute Commit
pop bne mul

Whoops! We fetched the
wrong instructions!
(Loop not finished)

Static instruction sequence
(i.e., program layout in memory)
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Dealing with control hazards:
Flushing the pipeline

\N ex“ \ooP
ireration)

x " What if we always fetch the next instruction?

-1dr r5, [r3], #4

cmp rl, r3

mla rO, r4, r5, roO
mul rd, r2, r4

bne .L3

\

Static instruction sequence

CPU
Decode Execute Commit
) |t (I ere

(i.e., program layout in memory) Whoops! We fetched the

wrong instructions!
(Loop not finished)
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Pipeline flushes destroy
performance

) TIvE 2

Processor works on 2 or 3
instructions at a time

Fetch | ldr|cmp|mla|mul
Decode Idr | cmp |mla
Execute ldr | cmp
Commit ldr

" Penalty increases with deeper pipelines
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Dealing with control hazards:
Speculation!

" Processors do not wait for branches to execute

" Instead, they speculate (i.e., guess) where to go next
+ start fetching

" Modern processors use very sophisticated
mechanisms

= E.g., speculate in Fetch stage—before processor even
knows instrn is a branch!

" >05% prediction accuracy
= Still, branch mis-speculation is major problem



Pipelining Summary

= Pipelining is a simple, effective way to improve
throughput
= N-stage pipeline gives up to N X speedup

® Pipelining has limits
" Hard to keep pipeline busy because of hazards
" Forwarding is expensive in deep pipelines
= Pipeline flushes are expensive in deep pipelines

=» Pipelining is ubiquitous, but tops out at N = 15



Software Takeaways

" Processors with a simple “in-order” pipeline are very
sensitive to running “good code”
= Compiler should target a specific model of CPU
= Llow-level assembly hacking

= ...But very few CPUs are in-order these days
= E.g., embedded, vltra-low-power applications

" Instead, =all modern CPUs are “out-of-order”
= Even in classic “low-power domains” (like mobile)



Out-of-Order Execution



Increasing parallelism via
dataflow

" Parallelism limited by many false dependencies,
particularly sequential program order

=" Dataflow tracks how instructions actually depend on
each other

" True dependence: read-after-write

Dataflow increases parallelism by eliminating
unnecessary dependences



Example: Dataflow in polynomial

evaluation

T1dr rS5.,~.lr3], #4
cmp r1§<£;~‘

mla ro, r&,*»r5, ro
mul rd, r2, r4

bne .L3

T1dr r5, [r3], #4
cmp rl, r3

mla rO, r4, r5, r0
mul rd, r2, r4

bne .L3

=

Loop iteration

_



T1dr
cmp
mla
mul
bne

T1dr
cmp
mla
mul
bne

4

r5,/1r3], #4
rlf r3
rQ@, r4, r5,

r'z.,
L3

rs5,
rl,
ro,
r4,
.L3

r2, r4
[r3], #4
r3

r4, r5,
r2, r4

ro

ro

Loop iteration




Example: Dataflow polynomial
execution

= Execution only, with perfect scheduling & unlimited
execution units

= 1dr, mul execute in 2 cycles
= cmp, bne execute in 1 cycle
= mla executes in 3 cycles

" Q: Does dataflow speedup execution? By how much?

" Q: What is the performance bottleneck?



—

O 0O N 060 0 b W N

1dr

Tdr
cmp
mla
mul
bne
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rs5,

ro,
r4,
.L3

[r3], #4

r3
r4,
r2,

rs,
r4

ro



—

O 0O N 060 0 b W N

1dr

cmp

Tdr
cmp
mla
mul
bne
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r5, Ar3], #4
rl, r3

ro, r4, r5,
r4, r2, r4
.L3

ro



—

O 0O N 060 0 b W N

1dr

cmp

mla

Tdr
cmp
mla
mul
bne
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r5, [r3], #4
ﬂf><;;,

ro, r&»r5, ro
r4, r2, r4

.L3



—

O 0O N 060 0 b W N

1dr

cmp

mla

Tdr
cmp
mla
mul
bne
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mul

rs5,

ro,
r4,
.L3

[r3], #4

r3
r4,
r2,

rs,
r4

ro



—

O 0O N 060 0 b W N

1dr

cmp

bne mla

T1dr

cmp
mla
mu

bne
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mul

rs5,

ro,
r4,
.L3

[r3], #4
r3

r4, rb5,
r2, r4

ro



—

O 0O N 060 0 b W N

1dr

1dr

cmp ~

cmp

1dr
cmp
mla
mul
bne
1dr
cmp
mla
mul
bne
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bne mla

bne
mla

r5, [r3], #4

rk(’r3

ro, r4, r5, roO

rd, r2, r4

.3

r5.-[r3], #

rl, rs

ro, r4, r5, roO

r4, r2, r4

.L3

mul

mul




—

O 0O N 060 0 b W N

|

cmp

i

crip
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cmp ~

bne

mla

mul

mul

mla

mu

mla




—

O 0O N 060 0 b W N

mul

mul

mu

mul

mul

mul

1dr
¥ .
cmp
1dr
. bne mla
—]
cmp .
1dr b ¥
he
1dr |cmp| mla
|bne
[
dr | -
_bne mla
1dr nEMP | -
he
. \\cmp mla
1dr \ b |
i \ N Qne
L cmp L
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mul




Example: Dataflow polynomial
execution

" Q: Does dataflow speedup execution? By how much?
" Yes! 3 cycles / loop iteration

" |nstructions per cycle (IPC) = 5/3 = 1.67
(vs. 1 for perfect pipelining)

" Q: What is the performance bottleneck?

= mla: Each m1a depends on previous mla & takes 3 cycles
* =» This program is latency-bound



Latency Bound

" What is the “critical path” of the computation?
" Longest path across iterations in dataflow graph

= E.g., mla in last slide (but could be multiple ops)

= Critical path limits maximum performance

" Real CPUs may not achieve latency bound, but
useful mental model + tool for program analysis



Out-of-order (OoQ) execution uses
dataflow to increase parallelism

" |dea: Execute programs in dataflow order, but give
the illusion of sequential execution



High-level OoO microarchitecture

CPU

Instruction Buffer

Decode Commit
Execute

| | |
In-order Out-of-order In-order
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Oo0 is hidden behind

in-order frontend & commit

CPU

Instruction Buffer

Decode Commit
Execute

" Instructions only enter & leave instruction buffer in
program order; all bets are off in between!
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Example: OoO polynomial
evaluation

" Q: Does Oo00 speedup execution? By how much?
" Q: What is the performance bottleneck?

= Assume perfect forwarding & branch prediction



Example: OoQO polynomial
evaluation pipeline diagram

) TIvE 2

Fetch &
Decode

1dr

Execute ldr

Commit 1dr
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Example: OoQO polynomial
evaluation pipeline diagram

) TIvE 2

Fetch &
Tdr | cmp
Decode
Execute 1dr cmp
Commit 1dr | cmp
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Example: OoQO polynomial
evaluation pipeline diagram

) TIvE 2

Fetch & Tdr | cmp [ mla

Decode

Execute Tdr cmp mla

Commit 1dr | cmp mla
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Example: OoQO polynomial
evaluation pipeline diagram

) TIvE 2

Fetch & Tdr | cmp | mla | mul

Decode

Execute 1dr cmp mla mul
Commit 1dr | cmp mla mul
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Example: OoQO polynomial
evaluation pipeline diagram

) TIvE 2

Feh & Tdr | cmp | mTla | mul | bne

Decode

Execute 1dr cmp mla mul bne
Commit 1dr | cmp mla mul | bne
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Example: OoQO polynomial
evaluation pipeline diagram

) TIvE 2

Fetch & 1dr | cmp | mla | mul | bne [ 1dr | cmp | mla | mul | bne | 1dr [ cmp | mla [ mul | bne | 1dr
Decode

Execute Tdr cmp mla mul bne Tdr cmp mla
Commit 1dr | cmp mla mul | bne 1dr | cmp




Example: OoQO polynomial
evaluation pipeline diagram

) TIvE 2

Fetch & 1dr | cmp | mla | mul | bne [ 1dr | cmp | mla | mul | bne | 1dr [ cmp | mla [ mul | bne | 1dr
Decode

Execute Tdr cmp mla mul bne Tdr cmp mla
Commit 1dr | cmp mla mul | bne 1dr | cmp

" Wait a minute... this isn’t OoO... or even faster
than a simple pipeline!

" Q: What went wrong?

= A: We're throughput-limited: can only exec 1 instrn



High-level Superscalar OoO
microarchitecture

" Must increase pipeline width to increase IPC > 1

CPU

Instruction o Buffer

| ! Decode Comml’r
: Execute Execute Execute

In-order Out- of order In- order
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Focus on Execution, not Fetch &
Commit

" Goal of OoO design is to only be limited by
dataflow execution

= Fetch and commit are over-provisioned so that they
(usually) do not limit performance
=» Programmers can (usually) ignore fetch/commit

=" Big Caveat: Programs with inherently unpredictable
control flow will often be limited by fetch stalls
(branch misprediction)

= E.g., branching based on random data



Example: Superscalar OoO

polynomial evaluation

Fetch &
Decode

1dr

cmp

Execute

Commit

) TIvE 2
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Tdr
cmp
mla
mul
bne
Tdr
cmp
mla
mul
bne

rs5,
rl,
ro,

.L3
rs5,

ro,
r4,
.L3

[r3], #4

r3
r4, r5,
r2, r4

[r3], #4

r3
r4, r5,
r2, r4

ro

ro



Example: Superscalar OoO
polynomial evaluation

) TIvE 2

Fetch & 1dr | mla | bne | cmp | mul '|dr. I"5, [I"3], #4
Decode cmp rl, r3
cmp | mul | Tdr | mla | bne mla I"O, r4, I"5, ro
mul r4, r2, r4
bne L3
Tdr r5, [r3], #4
Execute b rl, r3
mla rO, r4, r5, roO
mul r4, r2, r4
bne L3
Commit
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Example: Superscalar OoO
polynomial evaluation

) TIvE 2

1dr | mla | bne | cmp | mul
Fetch &
Decode
cmp | mul | Tdr [ mla | bne
Tdr
Execute
Commit
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Tdr
cmp
mla
mul
bne
Tdr
cmp
mla
mul
bne

rS.e[r3], #4
|"1-,%\r
<r0, r4, %5, ro0

r4, r2, r4

.L3

r5, [r3], #4
rl, r3

ro, r4, r5, roO
rd, r2, r4

.L3



Example: Superscalar OoO
polynomial evaluation

) TIvE 2

1dr | mla | bne | cmp | mul
Fetch &
Decode

cmp | mul | Tdr [ mla | bne

Tdr
Execute
mul

Commit
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Tdr
cmp
mla
mul
bne
Tdr
cmp
mla
mul
bne

rS.e[r3], #4
|"1-,%\r
<r0, r4, %5, ro0

r4, r2, r4

.L3

r5, [r3], #4
rl, r3

ro, r4, r5, roO
rd, r2, r4

.L3



Example: Superscalar OoO
polynomial evaluation

) TIvE 2

1dr | mla | bne | cmp | mul
Fetch &
Decode
cmp | mul | Tdr [ mla | bne
~Th
Tdr cmp
BL;
Execute mla
mul
Commit
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Tdr
cmp
mla
mul
bne
Tdr
cmp
mla
mul
bne

rS.e[r3], #4
|"1-,%\r
<r0, r4, %5, ro0

r4, r2, r4

.L3

r5, [r3], #4
rl, r3

ro, r4, r5, roO
rd, r2, r4

.L3



Example: Superscalar OoO
polynomial evaluation

) TIvE 2

1dr | mla | bne | cmp | mul
Fetch & Tdr rS.e[r3], #4
Decode cmp =T

cmp | mul | 1dr | mla | bne mla roe, r4, 5, ro

s mul r4, r2, r4
ldr cmp | bne bne [ L3
\ Tdr r5.[r3], #4
Execute mla cmp rl,mrs
mla rO, r4, r5, roO
mul r4, r2, r4
mul Tdr bne ] |_3

Commit
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Example: Superscalar OoO
polynomial evaluation

) TIvE 2

1dr | mla | bne | cmp | mul
Fetch & Tdr rS.e[r3], #4
Decode cmp =T

cmp | mul | 1dr | mla | bne mla roe, r4, 5, ro

mul r4, r2, r4
Tdr ’zp’?e mu’l bne [ L3
\ Tdr r5.[r3], #4
Execute nla mla cmp rl,mrs
/ | mla rO, r4, r5, roO
[ A - mul r4, r2, r4
mul Tdr cmp | bne bne ] |_3

Commit
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Example: Superscalar OoO
polynomial evaluation

) TIvE 2

1dr | mla | bne | cmp | mul
it 5 Tdr ro.e[r3], #4
Decode cmp rH=r
cmp | mul | 1dr | mla | bne m-la_ ro, r‘4, 5, ro
mul r4, r2, r4
T A b ) L.%
Tdr cmp | bne mu’l ne .
\ Tdr r5.[r3], #4
cmp rl, r>
Execute nla mla
/ mla rO, r4, r5, roO
[ A - mul r4, r2, r4
mul Tdr cmp | bne bne |_3
T1dr | cmp mla | bne | cmp | mla | bne
Commit
mul | Tdr mu’l
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Example: Superscalar OoO
polynomial evaluation

) TIvE 2

1dr | mla | bne | cmp | mul Observe:
Fetch & |y AN IN
Decode v M ¢ u Fl‘on’r-end &

cmp | mul | Tdr [ mla | bne

commit in-order

o ol m (i.e., left-to-right)

: \)1 =" Execute
xecute mp R a

, out-of-order
muV r )IZ&{e‘f

T1dr | cmp mla | bne | cmp | mla | bne

Commit VA g \\/AY

mul | Tdr mu’l




Example: Superscalar OoO

polynomi

) TIvE 2

al evaluation

1dr | mla | bne | cmp | mul | 1dr | mla | bne [ cmp | mul | 1dr | mla | bne [ cmp [ mul | 1dr
Fetch &
Decode

cmp | mul [ 1dr | mla | bne [ cmp | mul | 1dr | mla | bne | cmp | mul | 1dr | mla | bne | cmp

Tdr cmp | bne mu’l Tdr cmp | bne mu’l Tdr cmp

Execute mla mla mla mla mla

mul Tdr cmp | bne mul Tdr cmp | bne mul
T1dr | cmp mla | bne ywemp | mla | bneyl cmp | mla b} cmp | mla
Commit 4
mul | Tdr mu 1dr / Tdr mu’l
/ I

One loop iteration / 3 cycles!



Structural hazards: Other
throughput limitations

= Execution units are specialized
" Floating-point (add /multiply)
" Integer (add/multiply /compare)
" Memory (load /store)

" Processor designers must choose which execution
units to include and how many

= Structural hazard: Data is ready, but instr cannot
issue because no hardware is available



Example: Structural hazards can
severely limit performance

1dr | mla | bne | cmp | mul | 1dr | mla | bne [ cmp | mul | 1dr | mla | bne [ cmp [ mul | 1dr
Fetch &
Decode
cmp | mul [ 1dr | mla | bne [ cmp | mul | 1dr | mla | bne | cmp | mul | 1dr | mla | bne | cmp
AT Tdr Tdr Tdr Tdr Tdr Tdr
Execute
Int
cmp | bne | cmp | bne cmp | bne | cmp | bne cmp | bne | cmp
Execute
D mla mu'l mla mu'l mla mu'l
Execute
1dr | cmp | mla mul | 1dr mla mul | 1dr mla
Commit
bne*sm.g\ /ﬂgne o

One loop iteration / 5 cycles ®



Throughput Bound

" [ngredients:
" Number of operations to perform (of each type)

* Number & issue rate of “execution ports” /“functional
units” (of each type)

* Throughput bound = ops / issue rate
" E.g., (1 mla+ 1mul) /(2 + 3 cycles)

= Again, a real CPU might not exactly meet this bound



Software Takeaway

" 000 is much less sensitive to “good code”
= Better performance portability

= Of course, compiler still matters, but much less

" 00O makes performance analysis much simpler
=" Throughput bound: Availability of execution ports
= Latency bound: “Critical path” latency

= Slowest gives good approximation of program perf



Scaling Instruction-Level
Parallelism



Recall from last time:
ILP & pipelining tapped out... why?

10,000,000
Dual-Core Itanium 2 & /
1,000,000 ! =
Intel CPU Trends T
(sources: Intel, Wikipedia, K. Olukotun}) .
100,000

10,000
Processor clock rate stops
increasing

1,000
100
. No further benefit from ILP
1 - | I | W =Transistor density

@® = (Clock frequency
A =Power
® = Instruction-level parallelism (ILP)

0
1970 1975 1980 1985 1990 1995 2000 2005 2010
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Superscalar scheduling is complex
& hard to scale

" Q: When is it safe to issue two instructions?

= A: When they are independent

" Must compare all pairs of input and output registers

= Scalability: 0(W#) comparisons where W is “issue
width” of processor

= Not great!



Limitations of ILP

®" Programs have limited ILP
= Even with perfect scheduling, >8-wide issue doesn’t help

" 4-wide superscalar X 20-stage pipeline = 80 instrns in flight

®" High-performance OoQO buffers hundreds of instructions

= Pipelines can only go so deep
= Branch misprediction penalty grows
" Frequency (GHz) limited by power

* Dynamic scheduling overheads are significant

= Qut-of-order scheduling is expensive



Limitations of ILP = Multicore

= [LP works great! ...But is complex + hard to scale

=" From hardware perspective, multicore is much more
efficient, but...

" Parallel software is hard!
" Industry resisted multicore for as long as possible

* When multicore finally happened, CPU uarch simplified
=» more cores

= Many program(mer)s still struggle to use multicore
effectively
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