1 Overview

Before you begin, please take the time to review the course policy on academic integrity at:


Download the Assignment 3 starter code from the course Github using:

```
linux> git clone https://github.com/cmu15418/asst3-s20.git
```

**Assignment Objectives**

This assignment will give you a chance to optimize a program to run fast on a shared-memory multiprocessor. You will do so by modifying a sequential implementation of the program to make use of the OpenMP programming framework. Along the way, you will gain experience with the following:
• Making use of different sources of parallelism during different phases of a program.

• Identifying bottlenecks that limit the ability to exploit parallelism in a program and then finding ways to eliminate them.

• Making tradeoffs between deciding what values need to be recomputed and computing just those, versus simply recomputing everything.

• Finding ways to reduce memory contention by having different threads operate on separate copies of a data structure, and then merging the results together.

• Recognizing sources of imbalanced load among the threads and finding ways to mitigate these.

Although the particular application is highly contrived, the structure of its computations is similar to that found in graph and sparse-matrix applications. The skills you develop will be transferable to other problem domains and to other computing platforms.

Machines

The OpenMP standard is supported by a variety of compilers, including GCC, on a variety of platforms. Programs can be written in C, C++, and Fortran. For this assignment, you will be working in C. You can test and evaluate your programs on any multicore processor, including the GHC machines. For performance evaluation, you will run your programs on the Latedays cluster, a collection of 17 Xeon processors, each having 12 cores. Jobs are submitted to this cluster through a batch queue, and so you can get fairly reliable timings.

Resources

There are many documents describing OpenMP, including those linked from the OpenMP home page at http://www.openmp.org. Like many standards, it started with a small core of simple and powerful concepts but has grown over the years to contain many quirks and features. You only need to use a small subset of its capabilities. A good starting point is the document at http://www.cs.cmu.edu/~418/doc/openmp.pdf.

2 Application

The renowned theoretical social scientist Dr. Roland (“Ro”) Dent of the Reinøya Academy for the Technology Transfer of Universal Science, located in Reinøya Norway has devised a mathematical model of how the geographic distribution of animals derives from their own social preferences. His thesis is that animals do not like being alone, but they also don’t like being overcrowded, and they will migrate from one region to another in a predictable manner to achieve these preferences. His long-term goal is to set up and evaluate a rat colony containing over one million rats. While he is gathering the resources to build the colony and

1Often referred to by its Latin Name “RATTUS Norvegicus”
We define the Rats move among the nodes, with each move following an edge. All of the graphs we use are based on a square \( p \times h \) grid having width \( p \) and height \( h \). That is, node \( u \) has an edge to its neighbors to the left, right, above, and below. The graphs have additional edges connecting nodes that are not adjacent in the grid.

Rats are numbered from 0 to \( R - 1 \). At any given time, each rat is assigned to a node, indicating its location. Rats move among the nodes, with each move following an edge.

We define the average density as the ratio \( \lambda = R/N \), indicating the average number of rats per node. For a node \( u \), we define its count \( p(u) \) to be the number of rats at that node, and its load factor \( l(u) = p(u)/\lambda \) to be the ratio between its count and the average.

Over the past several years, Dr. Dent has worked with the students in 15-418/618 to build simulation models of rat colonies to test his quantitative models of rat societies. In doing so, he also learned about fractal patterns from the students’ experiences with the Mandelbrot set in Assignment 1. He recognized that rat colonies often exhibit fractal structures, and so he want to incorporate these structures into his models. Your job is to support Dr. Dent’s efforts by creating version 3.0 of a high-performance GraphRats simulator. Fortunately, for you, he has available a well-optimized sequential implementation, and so you can focus your efforts on maximizing its parallel performance.

**Model Parameters**

Dr. Dent formulated the GraphRats model by discretizing space into unit squares, forming the nodes of a graph. The graph has \( N \) nodes. The edges \( E \) of the graph indicate which nodes are adjacent. That is, \( (u, v) \in E \) when square \( u \) is adjacent to square \( v \). The edges are directed and symmetric: \( (u, v) \in E \) if and only if \( (v, u) \in E \). All of the graphs we use are based on a \( w \times h \) grid having width \( w \) and height \( h \). That is, node \( u \) has an edge to its neighbors to the left, right, above, and below. The graphs have additional edges connecting nodes that are not adjacent in the grid.

Figure 1: Representing the state of the simulation

![Figure 1: Representing the state of the simulation](image)
Figure 2: Reward as a function of actual and ideal load factors. The ideal load factors range between 1.25 and 2.25.

Simulation State

At any time, the state of the model is represented by the positions of the rats. Based on these positions, the state of each node $u$ can be expressed in terms of its count $p(u)$ or its load factor $l(u)$. Figure 1 shows two ways the GraphRats simulator can represent the model state for an $18 \times 12$ graph. In the text format (a), the count of each node in the grid is given as a decimal value. Blank grid positions indicate nodes $u$ with $p(u) = 0$. In the heat-map format (b), the load factors are represented by colors, with longer wavelength colors (red, orange) indicating high load factors, and shorter wavelength colors (blue, violet) indicating low load factors. Black indicates a count of 0. As this figure demonstrates, the text format is only suitable for small graphs, but it can be useful for debugging.

Movement

Rats prefer to group together, but they don’t like being too crowded, and they migrate in order to achieve these preferences. This migration is represented in the model by having the rats move from one node to another in order to maximize a reward function expressed in terms of the load factor $l$ by the equation

$$Reward(l) = \frac{1}{1 + \left(\frac{\log_2 \left[1 + \alpha(l - l^*)\right]}{2}\right)^2}$$

(1)

where $l^*$ is the ideal load factor (ILF) and $\alpha$ is a coefficient determined experimentally. Based on his observations of rat colonies, Dr. Dent conjectures that $\alpha = 0.40$. 4
He also conjectures that the ideal load factor $l^*$ ranges between 1.25 and 2.25, as explained below. This range indicates that rats like to cluster into groups above the average density. The values of the reward function are illustrated in Figures 2 and 3 for ILF values of 1.25, 1.75, and 2.25. In Figure 2, we see the reward is maximized when the load factor equals the ideal. Lower densities are less preferable, down to rewards ranging between 0.083 and 0.500 as the load factor approaches 0.0.

Similarly, more crowded conditions are less desirable, with the reward dropping as the load factor increases. As Figure 3 illustrates, this drop is very gradual (note the log scale), and less dependent on the ideal load factor, with $Reward(10)$ ranging between 0.175 and 0.194, $Reward(100)$ ranging between 0.03388 and 0.03406, and $Reward(100)$ ranging between 0.013202 and 0.013206.

In his earlier model, Dr. Dent used a constant value for the ideal load factor $l^*$ across all nodes. In recent observations of rats, however, he has noted that they are more willing to crowd together in one location if the nearby locations have a relatively higher population. He would like to test out the impact of this preference by formulating an adaptive ideal load factor. That is, for counts $c_l$ (the local count) and $c_r$ (the remote count), define the imbalance factor $\beta(c_l, c_r)$ as:

$$\beta(c_l, c_r) = \frac{\sqrt{c_r} - \sqrt{c_l}}{\sqrt{c_r} + \sqrt{c_l}}$$

This factor will range between $-1.0$ (when $c_l \gg c_r$) and $+1.0$ (when $c_r \gg c_l$). For node $u$, let $\hat{\beta}(u)$ to be the average value of $\beta(p(u), p(v))$ for all adjacent nodes $v$. Then the ideal load factor for $u$ is computed as:

$$l^*(u) = 1.75 + 0.5 \cdot \hat{\beta}(u)$$

We can see that the ILF will have its minimum value of 1.25 when $\hat{\beta}(u) = -1$ (the neighboring cells are much less crowded) and its maximum value of 2.25 when $\hat{\beta}(u) = +1$ (the neighboring cells are much more crowded.) Observe that this value will change over time, as the counts at $u$ and its neighboring nodes change.
Each time a rat moves, it does so randomly, but with the random choice weighted by the rewards at the possible destinations. More precisely, a rat at node $u$ considers the count at its current node $p(u)$, as well as those at each adjacent node $p(v)$, such that $(u, v) \in E$. This is illustrated in Figure 4(a), for a node having only grid connections. Each of the possible destinations (including possibly staying at the current node) has an associated reward value, based on computing the reward function for its load factor. These values are shown in Figure 4(b) for the case of $\lambda = 10$. We find that the average of the imbalance factors has value $\hat{\beta}(u) = -0.076$ and so the ideal load factor has value $l^*(u) = 1.788$.

If we arrange these values along a line (starting with the node and then following a row-major ordering of the neighbors), as is shown in Figure 4(c), they form a sequence of subranges summing to a total value $s$. (In the example of Figure 4(c), $s = 1.651$.) Choosing a random value $x \in [0, s)$ selects the destination node $v$, for which $x$ lies within the subrange associated with $v$. The figure illustrates the case where $x = 1.24$, causing the rat to move to the square on the right.

Each time a rat moves, the count at the previous node decreases, while the count at the new node increases. This, in turn, will causes changes in the reward and ILF values at these nodes, as well as the ILF values of nodes adjacent to them, and this will affect the choices made by other rats. We consider three different rules for computing and updating the rat positions:

**Synchronous:** All new positions are computed, and then all rats are moved.

**Rat-order:** For each rat, a new position is computed and then the rat is moved.

**Batch:** For batch size $B$, the new positions for one set of $B$ rats is computed, and then these rats are moved. This process is repeated for all batches.
More precisely, we can characterize all three of these rules as variants of a batch mode, where the batch size equals $R$ for synchronous mode, 1 for rat-order mode, and some intermediate value $B$ for batch mode. The computation can therefore be summarized by the following pseudo-code:

For $b$ from 0 to $\left\lceil R/B \right\rceil - 1$
  For $r$ from $b \cdot B$ to $\min((b + 1) \cdot B, R) - 1$
    Compute destination node for rat $r$
  For $r$ from $b \cdot B$ to $\min((b + 1) \cdot B, R) - 1$
    Move rat $r$ to its destination

Figure 5 illustrates how the different modes lead to different simulation behavior. These examples all started by initializing the simulation with 11,520 rats in the center of a $36 \times 32$ graph and running for 20 steps. In the synchronous mode simulation (a), we can see a checkered pattern at the center. This is an artifact of the mode—on each step, all of the rats base their next choice on the previous distribution of counts. Many will move to the same, low-count nodes, leaving their previous nodes almost empty. When you watch the simulation running, you will see oscillatory behavior, yielding the checkering pattern. Rat-order mode (b) yields a much smoother spreading of the rats. Unfortunately, rat-order mode does not lend well to parallel computation, and so batch-order mode (c) is presented as a compromise. By setting the batch size $B$ to 2% of $R$, the smooth spreading occurs, but in a way that is amenable to parallel execution.

**Graphs**

Figure 6 illustrates the structure and style of graphs that will be used in benchmarking your simulator. They are based on grids consisting of a $w \times h$ array of nodes, augmented with a set of hub nodes (shown in red). Each hub has an edge to every other node in its region (shown with black outlines). A hub provides a high degree of connectivity among the nodes within a region, whereas the only connections from one region to another are via the grid edges. As the figure illustrates, some regions contain a single hub, while others
contains three. As the figure also illustrates, there are two classes of graph:

**Uniform:** All of the regions have the same rectangular shape and orientation

**Fractal:** The overall graph is constructed as a hierarchy of rectangles, with some rectangles subdivided vertically or horizontally into two or three rectangles of equal size. The rectangles at the lowest levels in the hierarchy then form the regions of the graph.

For benchmarking purposes, your simulator will be run on four different 180 × 160 graphs with average load factors of 35, for a total of 1,008,000 rats. More information about the benchmark graphs is given in Appendix B.

One consequence of the hub structure is that the nodes have varying degrees, with most nodes having at most eight connections (four grid edges plus up to three connections to hubs), while the hubs have much higher degrees. The fractal graphs used for benchmarking are highly irregular, in terms of region sizes (and therefore the degrees of the hubs) and structure.

### 3 Your Task

The starter code, in the `code` subdirectory, contains two fully functional GraphRats simulators, one written in Python (`grun.py`) and one in C (compiling to a sequential version `crun-seq` and a parallel version `crun-omp`). The Python version is very slow, but it serves as the standard definition of correct behavior. The C versions compile (compile with `make all`) and run correctly. The sequential version has already been carefully optimized. It computes and stores the various weights once for each batch, and it uses binary search to determine where each rat should move. Your job is to make the C version run faster through
parallel execution, using OpenMP pragmas and functions, along with whatever changes you want to make to the data structures and simulation code.

In doing your optimizations, you must preserve the exact functionality of the provided code. Despite the seeming randomness of how rat moves are generated, the program is completely deterministic. Given the following parameters: 1) the graph, 2) the initial rat positions, 3) a global seed, 4) the update mode, and 5) the number of simulation steps, the program will produce the exact same sequence of rat moves—and therefore the exact same node counts—every time it is run. This determinism is maintained in a way that won’t cause any sequential bottlenecks by associating a separate pseudo-random number seed with each rat.

Running the Simulator

The simulator can be run with many options. Its usage is as follows:

```
linux> ./crun-XXX -h
./crun-XXX -g FILE -r RFILE [-n STEPS] [-s SEED] [-u (r|b|s)] [-q] [-i INT] [-t THD] [-I]
-h Print this message
-g FILE Graph file
-r RFILE Initial rat position file
-n STEPS Number of simulation steps
-s SEED Initial RNG seed
-u UPDT Update mode:
  s: Synchronous. Compute all new states and then update all
  r: Rat order. Compute update each rat state in sequence
  b: Batch. Repeatedly compute states for small batches
      of rats and then update
-q Operate in quiet mode. Do not generate simulation results
-i INT Display update interval
-t THD Set number of threads
-I Instrument simulation activities
```

where XXX is either "seq" or "omp."

You must provide a graph file and a file describing the initial rat positions. These are included in the subdirectory code/data. Graph file names have the form g-WWW×HHH-S.gph, where WWW and HHH indicate the width and height of the grid, and S is an identifying name for the graph region structure. These names start with “frac” for graphs having a fractal structure, and “uni” for those based on a uniform tiling.

Rat file names have the form r-WWW×HHH-PLL.rats, where WWW and HHH indicate the width and height of the grid, P describes the initial positions:

- c: All rats are at the center node.
- d: Rats are distributed evenly along the nodes on the diagonal.
- u: Rats are distributed uniformly among all nodes.
- r: Rats are randomly distributed among the nodes.
The digits in \( LL \) specify the average load factor.

Additional optional arguments allow you to specify the number of simulation steps, the global seed, the update mode (random, batch, or synchronous), and the number of threads (only meaningful when running \texttt{crun-omp}.)

By default, the simulator prints the node counts on every step. Be careful to do this only for small graphs and small simulation runs! The optional flag \texttt{-q} instructs the simulator to operate in “quiet” mode, where it does not print any simulation results. Setting the display update interval to \( I \) with the \texttt{-i} flag causes the simulator to only print the node counts once every \( I \) time steps.

The simulator measures its elapsed time and expresses the performance in terms of \textit{nanoseconds per move} (NPM). If a simulation of \( R \) rats running for \( S \) steps requires \( T \) seconds, then NPM is computed as \( 10^9 \cdot \frac{T}{R \cdot S} \).

The option \texttt{-I} provides a mechanism by which you can instrument the time required by different phases of the simulator. For example, here are the instrumentation results printed when running the starter code:

```
Running './crun-seq -g ./data/g-180x160-fracC.gph -r ./data/r-180x160-r35.rats -n 50'
50 steps, 1008000 rats, 8.195 seconds
  114 ms  1.4 %  startup
  6755 ms 81.3 %  compute_weights
  365 ms  4.4 %  compute_sums
 1069 ms 12.9 %  find_moves
   3 ms  0.0 %   unknown
  8309 ms 100.0 % elapsed
```

This example simulated 50 steps in 8.3 seconds (8,309 ms). The time was divided as follows:

**startup:** Reading in the graph and rat files and setting up the data structures.

**compute\_weights:** Computing the reward functions according to Equation 1 for all nodes.

**compute\_sums:** Computing the cumulative weights for each node, as illustrated in Figure 4(c).

**find\_moves:** Computing the new position for each rat.

**unknown:** Everything else

This information is collected by instrumentation code included in the program. You will find that it generates useful information about which portions of the program require the most time, as well as the gains you obtain through parallelism. Feel free to customize this code in any way you like. You will see that the reference version we provide can also be run with instrumentation, and so you can get a detailed breakdown of how the reference program performs compared to yours.

**Visualizing the Simulation Results**

The Python program \texttt{grun.py} can act as a simulator, accepting the same arguments as \texttt{crun}. In addition, it can serve as a visualizer for other simulators, generating both the text and heat-map displays of the
simulation state. This is done by piping the output of the simulator into grun.py operating in driven mode.

As an example, the visualization shown in Figure 5(c) was generated with the command (broken across two lines for display purpose):

```
linux> ./crun-seq -g data/g-036x032-fracZ.gph -r data/r-036x032-c10.rats -n 20 -u b | ./grun.py -d -v h
```

We can see that the simulation was run on a 36 × 32 fractal graph, with 11,520 rats initially in the center node. The simulation ran for 20 steps in batch mode. These results were piped into grun.py to provide a heat-map visualization. (You must have an X window connection to view the heat maps.) The command line option -v a (for “ASCII”) will generate a text representation of the node counts. (If you try to do this for a graph that won’t fit in your terminal window, the program will fail silently.)

### Regression Testing

The provided program regress.py provides a convenient way for you to check the functionality of your program. It compares the output of the C versions of the simulator with the Python version for a number of (mostly small) configurations. Its usage is as follows:

```
linux> ./regress.py -h
Usage: ./regress.py [-h] [-c] [-t THD]
  -h     Print this message
  -c     Clear expected result cache
  -t THD Specify number of OMP threads
          If > 1, will run crun-omp. Else will run crun-seq
```

The program maintains a cache holding the simulation results generated by the Python simulator. You can force the simulator to regenerate the cached values with the -c flag. When the option -t 1 is given, it will test program crun-seq. For higher thread counts, it will run crun-omp with that number of threads. The default is 8. The benchmarking program also checks that the node counts generated by your simulator match those of the reference implementation. This will help you test larger cases, for which the Python simulator would be much too slow.

Doing frequent regression testing will help you avoid optimizing incorrect code. Realize also, that the tests performed are not comprehensive. We reserve the right to evaluate your program for correctness on other graphs!

### Performance Evaluation (64 points)

The provided program benchmark.py runs simulations of four different combination of graphs and initial rat positions, as documented in Figure 7. All simulations are run in batch mode. By default, the program runs with 8 threads for 50 simulation steps. (It defaults to 8 threads on the GHC machines.) It also runs the provided reference version of the simulator, named crun-soln on each benchmark. It captures the final output of the two simulators in files and then checks that they are identical.

The full set of options is as follows
<table>
<thead>
<tr>
<th>Name</th>
<th>Graph Name</th>
<th>Rat Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>uniA</td>
<td>Random</td>
</tr>
<tr>
<td>B</td>
<td>uniB</td>
<td>Random</td>
</tr>
<tr>
<td>C</td>
<td>fracC</td>
<td>Random</td>
</tr>
<tr>
<td>D</td>
<td>fracD</td>
<td>Random</td>
</tr>
</tbody>
</table>

Figure 7: Graph and initial rat position combinations used for performance benchmarking.

```
linux> ./benchmark.py -h

-h Print this message
-Q Quick mode: Don’t compare with reference solution
-I Include instrumentation results from each run
-b BENCHLIST Specify which benchmarks to perform as substring of ’ABCDEF’
-n NSTEP Specify number of steps to run simulations
-t T1:T2:...:TK Specify number of OMP threads as a colon-separated list
If > 1, will run crun-omp. Else will run crun-seq.
-r RUNS Set number of times each benchmark is run
-i ID Specify unique ID for distinguishing check files
-f OUTFILE Create output file recording measurements
If file name contains field of form XX..X, will replace with ID having that many digits
```

Here’s a brief description of the options:

- **-Q** Run in “quick” mode. Do not compare the functionality or performance to that of the reference solution, and do not generate a score.

- **-I** Include the instrumentation results from each run of the simulator.

- **-b BSTRING** Specify which of the benchmarks to run as a string consisting of characters in the range A–D. For example, the string “CD” would run the fractal-graph benchmarks.

- **-n S** Run the simulations for S steps. Running for small values of S provides a useful way to test your program without requiring a full length run.

- **-t T1:⋯:Tk** Run with the specified number(s) of threads. When T = 1, the program crun-seq will be run. Otherwise crun-omp will be tested. By running with both T = 1 and a larger value of T, you will be able to determine the speedup your program obtains. Doing so in a single benchmark run will provide more reliable results than would be the case for separate runs.

- **-r r** Run each benchmark r times and take the minimum of the execution times. The default is 3.

- **-i ID** Specify a unique identifier for use in naming the check files (capturing the outputs of the two simulators.) This is used to allow multiple benchmarking runs to take place simultaneously without causing name collisions.
Generate an output report in file FILE, in addition to printing it on standard output. As a special feature, if the file name contains a string of the form XXX···XX, then the generated file will be named by replacing these characters by randomly generated digits. This provides an easy way to do multiple runs of the simulator to compensate for statistical variations in the program performance.

Suppose, for some benchmark, your program runs in time $T$ and the reference version runs in time $T_r$. You will get 16 points if the output matches that of the reference version, and the runtimes satisfy $T_r/T \leq 0.95$. You will get partial credit as long as the outputs match and $T_r/T > 0.60$, i.e., your program is less than $1.67 \times$ slower than ours. The ratio $T_r/T$ is included in the output report for each benchmark. You can run benchmark.py on any machine, but the grading standards will be based on the performance running on a Latedays processor (see the next section about how to use these processors.)

Running on the Latedays Cluster

The Latedays cluster contains 18 machines (1 head node plus 17 worker nodes). Each machine features:

- Two, six-core [Xeon e5-2620 v3] processors (2.4 GHz, 15MB L3 cache, hyper-threading, AVX2 instruction support).
- 16 GB RAM (60 GB/sec of BW)

You can login to the Latedays head node latedays.andrew.cmu.edu via your Andrew login. You can edit and compile your code on the head node, and then run jobs on the cluster’s worker nodes using a batch queue. You have a home directory on Latedays that is not your Andrew home directory. (You have a 2GB quota.) However, your Andrew home directory is mounted as $\sim$/AFS.

Do not attempt to submit jobs from your AFS directory, since that directory is not mounted when your job runs on the worker nodes of the cluster. (It is only mounted and accessible on the head node.) Instead, copy your source code over to a subdirectory you have set up in your Latedays directory and recompile it.

The program submitjob.py is used to generate and submit command files to the job queue. It is invoked as follows:

```
linux> ./submitjob.py -h
    -h       Print this message
    -J       Don’t submit job (just generate command file)
    -s NAME  Specify command file name
    -a ARGS  Arguments for benchmark.py (can be quoted string)
    -r ROOT  Specify root name of benchmark output file
    -d DIGITS Specify number of randomly generated digits in command and
                 benchmark output file names
```

Here’s a brief description of the options:

- $-J$ Generate the command file, but do not submit it.
-s \texttt{NAME} Specify the name of the command file. The default will name is of the form \texttt{latedays-\textit{DDDD}.sh}, where \textit{DDDD} is a sequence of random digits.

- a \texttt{ARGS} Provide arguments(s) for \texttt{benchmark.py}. Typically, \texttt{ARGS} is a quoted string. For example, specifying \texttt{-a \texttt{'-I -t 6'}} will cause the benchmarking to be done with instrumentation enabled and with 6 threads rather than 12.

- r \texttt{ROOT} Specify the prefix of the summary output file name. The output file is generally of the form \texttt{ROOT-\textit{DDDD}.out}, where \textit{DDDD} is a sequence of random digits.

- d \texttt{d} Specify the number of random digits to include in the command and output file names.

The inclusion of random digits in the file names provides a way to avoid naming collisions. For example, you can invoke \texttt{submitjob.py \textit{n}} times with the same arguments, submitting \textit{n} jobs, each with distinct file names.

After a successful submission, the program will echo the Id of your job. For example, if your job was given the number 337 by the job queue system, the job would have the Id \texttt{337.latedays.andrew.cmu.edu}.

After you submit a job, you can check the status of the queue via one of the following commands:

\texttt{linux> showq}
\texttt{linux> qstat}

When your job is complete, log files from standard output and standard error will be placed in your working directory. If the command file was \texttt{latedays-1234.sh}, then the generated files will be \texttt{latedays-1234.sh.o337} and \texttt{latedays-1234.sh.e337} (substituting your job number for 337, of course.) In addition, a summary of the results will be written to the output file.

Looking at the command file, you will see that the maximum wall clock time for the job is limited to 30 minutes. This means that the job scheduler will cut your program off after 30 minutes without generating any output.

Some other things to keep in mind:

- Only use the Latedays head node for tasks that require minimal execution time, e.g., editing files, compiling them, and running short tests.

- The Latedays Python installation does not contain the libraries required by \texttt{qrun.py} for visualization.

4 Some Advice

How to Optimize the Program

- There are many possible sources of parallelism in the simulator, and you will want to exploit different forms at different stages. For example, sometimes you can run in parallel over the nodes, and other times in parallel over the rats.
When you get a parallel version working, you may notice a big performance difference when running on some graphs versus others. Think about how the nodes are numbered (according to a row-major order) and what sorts of load imbalances the region structures and the high-degree hub nodes can create.

When you use OpenMP static partitioning of for loops, it will divide the iterations into blocks of even size. When done across the nodes, this might yield an unbalanced load, due to the nonuniform degrees of the nodes. You could use dynamic parallelism, but it might be better to devise problem-specific ways of avoiding load imbalance.

Having multiple threads attempt to update a set of global values will require costly synchronization. Instead, it can be better to have each thread generate data separately, and then use the threads to collaboratively aggregate the separate copies.

**Important Requirements and Tips**

The following are some aspects of the assignment that you should keep in mind:

- Use caution when evaluating performance by running on other machines. For example, the GHC machines are good ones to use for code development. However, the GHC machines have a higher performance memory system than the Latedays machines, which can potentially mask memory performance bottlenecks that will arise on a Latedays machine. Plan to do many runs on the Latedays machines.

- Machine performance varies across machines, including across the different nodes of the Latedays cluster. Don’t rely on the absolute times of a particular run, but rather on the performance relative to the reference solution or to running with a single thread.

- Don’t print on stdout. Since the simulator is designed to pipe its output into a visualization program, standard output should be reserved for simulation results. If you want to print error messages or other information, use stderr. The provided function outmsg will prove useful for this (and it also prints to any designated output file.)

- You are free to add other header and code files and to modify the make file. You can switch over to C++ (or Fortran) if you like.

- You are to restrict your performance improvement techniques to ones that enhance or make better use of parallelism. Any optimizations that would improve the sequential simulator performance are *not* allowed. In particular:
  - You may not modify the function neighbor_ilf in sim.c. You also cannot use other methods to compute the ideal load factor (ILF) for a node.
  - You may not modify any functions in rutil.c or use different versions of these functions.

- Although you will only be tuning your code for a small number of graphs and initial rat states, you should design your code to use techniques and algorithms that will generalize across a wide range of
graph/state combinations. Think of the benchmark cases as points in a large parameter space. Your program should be designed to achieve reasonable performance across the entire space. You can assume that the graphs of interest will consist of grids combined with a small number of high-degree hub nodes.

- Your code should run correctly for any number of threads up to the number of cores on the machine.

- The provided simulator has some features that you should maintain in your version:
  - It does not use any global variables. It encapsulates the graph structure and the simulation state into structs
  - It does not assume any limits on the number of nodes, rats, or any other parameters. All data structures are allocated dynamically.
  - It allocates all of the data structures it requires at the beginning of the simulation, and never requires dynamic allocation after that point.

- You can use any kind of code, including calls to any standard libraries, as long as it is platform independent. You may not use any constructs that make particular assumptions about the machine instruction set, such as embedded assembly or calls to an intrinsics library.

- You may not include code generated by other parallel-programming frameworks, such as ISPC.

5 Your Report (28 points)

Your report should provide a concise, but complete description of the thought process that went into designing your program and how it evolved over time based on your experiments. It should include a detailed discussion of the design and rationale behind your approach to parallelizing the algorithm. Specifically try to address the following questions:

- What approaches did you take to parallelize the different parts of the program?

- How did you avoid wasting time using synchronization constructs?

- How successful were you in getting speedups from different parts of the program? (These should be backed by experimental measurements.)

- How does the performance scale as you go from 1 (running crun-seq) to 12 threads? What were the relative speedups of different parts of your program?

- How did the graph structure and the initial rat positions affect your ability to exploit parallelism? What steps did you take to work around any performance limitations?

- Were there any techniques that you tried but found ineffective?
6 Hand-in Instructions

You will submit your code via Autolab and your report via Gradescope. For the code, you will be submitting your entire directory tree.

1. Your code

(a) **If you are working with a partner, form a group on Autolab.** Do this before submitting your assignment. One submission per group is sufficient.

(b) Make sure all of your code is compilable and runnable.
   
i. We should be able to simply run `make` in the `code` subdirectory and have everything compile
   
ii. We should be able to replace your versions of all of the Python code, as well as the file `rutil.c` with the original versions and then perform regression testing and benchmarking.

(c) Remove all nonessential files, especially output images from your directory.

(d) Run the command “`make handin.tar`.” This will run “`make clean`” and then create an archive of your entire directory tree.

(e) Submit the file `handin.tar` to Autolab.

2. Your report

(a) Please upload your report in PDF format to Gradescope, with one submission per team. After submitting, you will be able to add your teammate using the `add group members` button on the top right of your submission.

A A Gallery of Rat Simulations

We encourage you to explore the behavior of the simulator using different combinations of graph structure and initial state. You will gain a better understanding of the factors that affect simulation performance. For starters, the provided make file will run 11 different demonstrations. Try running

```
linux> make demoX
```

for $X$ ranging from 1 to 11.

Figure 8 shows simulations of graph fracZ, the $36 \times 32$ fractal graph illustrated in Figure 6(b). The simulations start with different initial conditions. With the rats initially in the center (a), they expand outward to reduce crowding. The progression is slow, however, since nodes with low occupancy also have low reward values. You can see a few nodes that are dark violet. These have only a single, isolated rat. With the rats initially along the diagonal (b), they expand outward, but then they begin to form uneven distributions. This unevenness is even more pronounced when starting with a random distributions (c). The fact that the reward value is maximized with a load factor greater than 1.0 causes the rats to gather into clumps. As
(a). Rats initially in center

Figure 8: Simulations of a $36 \times 36$ fractal graph with different initial conditions ($\lambda = 10$)
Figure 9: Simulations of different $36 \times 32$ graphs. Rats initially distributed along the diagonal ($\lambda = 10$)

the simulation continues, these clumps become larger and more distinct. You can see the hubs tend to get higher counts than other nodes. Their high connectivity causes many rats to go to them, even though they are crowded. Rats move within regions more rapidly than between them, and so the rats tend to group into rectangular blocks of nodes according to the region structure.

Figure 9 shows simulations of two different $36 \times 32$ graphs, in each case with the rats distributed uniformly along the diagonal. The simulation of the fractal graph (a) is the same as in Figure 8(b). For the other graph, the high connectivity of the hub nodes causes them to become highlighted. These hubs also cause the rats to quickly distribute among their regions.
B Benchmark Graphs

The following table provides the statistics for graphs that will be used in benchmarking your simulator. The graphs all have width \( w = 180 \) and height \( h = 160 \), for a total of 28,800 nodes.

<table>
<thead>
<tr>
<th>Graph</th>
<th>Edges</th>
<th>Regions</th>
<th>Hubs</th>
<th>Max. Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>UniA</td>
<td>286,780</td>
<td>15</td>
<td>45</td>
<td>1,919</td>
</tr>
<tr>
<td>UniB</td>
<td>171,400</td>
<td>72</td>
<td>72</td>
<td>399</td>
</tr>
<tr>
<td>FracC</td>
<td>187,612</td>
<td>30</td>
<td>46</td>
<td>4,899</td>
</tr>
<tr>
<td>FracD</td>
<td>208,902</td>
<td>21</td>
<td>37</td>
<td>4,899</td>
</tr>
</tbody>
</table>

The following figures show the structure of the four graphs.
Figure 10: Uniform graph uniA
Figure 11: Uniform graph uniB
Figure 12: Fractal graph \textit{fracC}
Figure 13: Fractal graph fracD