
1

A Bit About Forth

Dave Eckhardt
de0u@andrew.cmu.edu

mailto:de0u@andrew.cmu.edu

2

Disclaimer

● I don't know Forth
● Forth tutorials abound on the Web

– Intro: stack, postfix stack operators
– Writing a simple Forth word
– Loops
– Stack manipulation, simple built-ins
– Gee, tutorials take forever to write, so close with:

● 100%-inscrutable example using Forth's full power
● I am ~40% through the inscrutable stage

3

Outline

● Forth is a language with

– No syntax
1

– No operator precedence

● No operators

– No functions
– No variables
– No constants

– No loops
2

4

No Syntax

● Well, hardly any
– “Whitespace-delimited sequence of digits” (in the current

input radix) is recognized as a number.
● In many dialects, a dot in a number is allowed for

readability or to signal double precision

– “Whitespace-delimited sequence of characters” is a
“word”.

5

Syntax Examples

● 123
● FFEB.09CA
● >entry
● 2dup
● $entry
● *, +, -, /, etc.

6

No Operator Precedence

● Easy: no operators!
● In C, + and && and || are part of the language

– So the language arranges for them to be evaluated
according to “natural” precedence (more or less)

● In Forth, all executable things are of the same class
(“word”)

● Precedence is manual (postfix stack ops)

7

Stack Operations

 3 4 +
– Push 3 (a number) onto the stack.
– Then push 4 (a number) onto the stack.
– Run +

● Which traditionally pops two integers from the stack, adds
them, and pushes the result on the stack. But it could be
redefined to do anything else instead.

● “3 + 4 * 2” - meaning is up to you, not to Forth
 3 4 2 * +
 3 4 + 2 *

8

No Functions

● Words aren't functions
– They have no types

● No parameter types
– Words pull whatever they want off the stack
– First parameter may determine how many parameters

● Or the second, if you want
● No return types

– Words push whatever they want onto the stack
– Common idiom:

● success ⇒ push answers, then push “true” (-1)
● failure ⇒ push “false” (0)

– Actually, nothing has any types

9

No Types

● What is the type of items on the stack?
– “Cell” - approximately “machine word”
– Same type as BLISS (great-grandfather of C, used to

write DEC's VMS, CMU's Hydra)
● Some words operate on multiple cells (“extended

precision”)

10

No Variables

● Most code operates on stack values
● Once you have “too many” values on your stack your

code gets confusing
● There is a word called VARIABLE

– It doesn't “declare” a “variable”, though.
– It allocates a cell and compiles a word which pushes the

address of that cell on the stack.

 VARIABLE FOO
 FOO @ 3 + \ Get contents of FOO, add 3

11

VALUE

● If a “variable” will be read more than written, you can
use VALUE instead.
– It places a value into a freshly-allocated cell and

compiles a word which fetches the contents of the cell
and pushes it on the stack

 0 value BAR
 BAR 3 + \ Get BAR contents, add 3
 4 TO BAR \ sets BAR to 4 - advanced

12

No Constants

● There is a word called CONSTANT, though.
– Can you guess what it does?

13

No Loops

● The language does ship with words which implement
loops

 10 1 DO I . CR LOOP

● But these words aren't privileged – you can write your
own which work just as well.
– UNLESS, UNTIL, WHEREAS... - go wild!

14

Is There Anything There?

● No...

– No syntax
1

– No operator precedence

● No operators

– No functions (no types)
– No variables
– No constants

– No loops
2

● So what is there?

15

Parts of Forth

● “The Stack”
– Really: the operand stack
– Versus the other stacks

● Call/return stack – (ab)used by loop words
● Exception stack – if exceptions are available

● The Dictionary
– Maps word names to execution tokens

● The “Compiler”
● The “Interpreter” (read loop)

16

“Compiler”

● “Compiler” stitches together code bodies of existing
words
 : addone 1 + ;

● Looks like a “function definition”, beginning with the “:”
token and ending with the “;” token
– Nope!

● : (a word like any other word) grabs a word from the
input stream, saves it “somewhere”, and turns on “the
compiler”

● “The compiler” creates code sequences for pushing
numbers and pushing calls to words

17

“Compiler”

● When “the compiler” sees ; it adds a dictionary entry
mapping the saved name-token to the execution-token
sequence

● Where's the code?
– Here comes a vague analogy...
– ...C code which when compiled would have similar effect

to Forth...

18

The Code

 /* “threaded code” style */

 typedef void (*notfun)(void);
 notfun push1, plus;
 notfun addone[] = { push1, plus, 0 };

 void execute(notfun a[])
 {
 while (a[0])
 (*(a++))();
 }

19

Threaded Code

● Easy to generate machine code which just calls other
machine code

● Also easy to generate machine code for “push integer
onto stack”

● Handful of built-in words must be written in assembly
language
– Peek, poke (@, !)
– +, -, *, /
– Compiler itself

20

Isn't Threaded Code Slow?

● Other organizations are possible
– Can peephole-optimize threaded code pretty well
– Can “cache” top N words of stack in registers
– Can do a real optimizing compiler if you want

21

Are We Having Fun Yet?

● Why would people do this?
– Great for memory-constrained environments

● Forth runtime, including compiler, editor, “file system”,
“virtual memory” can be implemented in a few kilobytes of
memory

● Stacks are very small for real applications (small number
of kilobytes)

– Very extensible
● Want software VM? Just redefine @, !

– “Hard” things may be trivial
● De-compiling Forth is often very easy...

22

Are We Having Fun Yet?

● Why would people do this?
– A trained person can bring up a Forth runtime on just

about any system in around a week given assembly-
language drivers for keyboard and screen

– GCC+glibc ports to new processors typically take a little
longer than that...

23

Is Forth Usable?

● It's missing:
– types, type-checking, pointer-checking

● How can code written this way work?

24

Is Forth Usable?

● It's missing:
– types, type-checking, pointer-checking

● How can code written this way work?
– Oddly enough, very well.
– Forth advocates claim it promotes careful thought. Also,

most words are short enough to be solidly tested.
– Another slant: No way to avoid paying attention.
– Another slant: anybody who can wrap their mind around

it is a very good programmer...

25

Curiosity or Language?

● Who uses this?
– OpenFirmware (every Macintosh ~1996-2006)
– PostScript allegedly was inspired by Forth
– Embedded firmware
– Astronomers...since the 1960's
– Lots of things in space run/ran Forth

– http://web.archive.org/web/20101024223709/http://forth.gsfc.nasa.gov/

26

Who Should Learn Forth?

● Long-hair hacker types might find it fun
● Embedded-systems programmers might find it useful
● CS majors might find it challenging
● Its era might be over...
● Don't tell your ML instructor I told you about it

27

Further Reading

● Forth - The Early Years
– http://www.colorforth.com/HOPL.html

● The Evolution of Forth
– http://www.forth.com/resources/evolution/

● Forth OS
– http://www.forthos.org

