The Story of a Page

Rahul Iyer
Agenda

- The Page Descriptor
- The Various Page Lists
- The Evictor Interface
 - Kswapd
 - The Direct Reclaim Path
- The Life Cycle of a Page
- Conclusion
The Page Descriptor

- Defines a *physical* page
- One for every physical page in memory
- All global descriptors stored in the array `mem_map[]`
- Two ‘list’ fields
 - `struct list_head list`
 - `struct list_head lru`
I’m Lost… Where am I?

- Page can be part of 2 lists
 - Through the \texttt{list} field
 - Example: Inode cache
 - Not of real interest to us
 - Through the \texttt{lru} field
 - Part of the active/inactive list
 - Part of the slab allocator
The Evictor Interface

The evictor basically has two parts to it

- The kswapd ‘page out’ daemon
- The Direct reclaim Path
The Page Out Daemon

- The kernel thread – kswapd
- Executes the function `kswapd()`
- Created at startup
 - Created by `kswapd_init()`
 - `kswapd_init()` is `__init()`
- Sleeps for the most part
- Woken up in cases of low memory
- Primary call path is `balance_pgd()"
The Page Out Daemon (Contd.)

- balance_pgdat() calls
 - shrink_zone()
 - shrink_slab()

- shrink_zone()
 - is the per zone page freer
 - Used by kswapd and Direct Reclaim

- shrink_slab()
 - Shrinks the slab caches in the slab allocator
 - Used by both kswapd and Direct Reclaim
The Direct Reclaim Path

- This is when a process tries to free memory directly – the situation is desperate

- Bypass kswapd

- The main entry is `try_to_free_pages()`

- `try_to_free_pages` calls
 - `shrink_caches()` calls
 - `shrink_zone()`
 - `shrink_slab()`

- May involve a call to the OOM killer
Life Cycle of a Page

- Page allocated using `alloc_pages()`
- Added to the inactive list or Slab cache
- On access, marked accessed by `mark_page_accessed()`
- Moved back to inactive list by `refill_inactive()`
- In low memory situations, reaped by `kswapd` or Direct Reclaim
Conclusion

The evictor has two ‘entry’ points

Deals closely with the Page cache

- Means that Page cache structure will be altered
- Hairy as the page cache is a cache of used pages + Buffer Cache

Next Milestone – figure our the call sites of all page cache functions