
PowerPC 74xx Architecture
32-Bit Addressing Modes

Porting Plan 9 to the PowerPC 74xx Architecture

Adam Wolbach

awolbach@andrew.cmu.edu

15-412 Operating Systems Practicum

2

Abbreviations
Memory

EA Effective Address (32-bit)
VA Virtual Address (52-bit)
RA Real Address (32-bit)
MSR Machine State Register
SDR1 Storage Description Register 1

Base Mathematics
0xFFFF FFFF in Base 16/Hexadecimal
0b1111 1111 in Base 2/Binary

Arithmetic
X || Y Concatenate X with Y
X & Y X (bitwise AND) Y
X | Y X (bitwise OR) Y
X ^ Y X (bitwise eXclusive OR) Y
~X bitwise NOT X (complement)
YX Repeat bit X, Y times (e.g., 30 = 000)

3

3

Register Abbreviations

ABCXX Denotes XX bit of register ABC

Field Name

200 4 19 31

4 16 12

Size of Field

Bit Index

4

Addressing Overview

 Three primary mechanisms
Real Addressing Mode

Block Address Translation (BAT)

Segmented Address Translation (SAT)
 Ordinary Segment Translation

 Direct-Store Segment Translation

 MSRIR value controls instruction fetches

 MSRDR value controls data accesses

5

Machine State Register (32-Bit)

 Controls many important system flags
 EE[16]: External Enable (Interrupts)

 If set, external interruption allowed (e.g. Keyboard, “Timer”)

 PR[17]: Problem State (User Mode)
 If set, processor can only execute non-privileged instructions

 IR[26]/DR[27]: Instruction Relocate/Data Relocate
 If set, Instruction/Data address translation mechanisms on

 RI[28]: Recoverable Interrupt
 If set, a resume to regular execution possible

0 1 13 15

///
16 24

P
O
W

/
I
L
E

EE PRSF

17

FPME

F
E
0

SE

1918 20 21 22 23

BE LERI

F
E
1

/

/ = Reserved
25 2726 3028 29 31

IP IR DR

12

//

6

Real Addressing Mode

 EA == RA to the processor
 Bypasses all storage protection checks/translation

 MSRIR = 0 results in real addressing mode for
instruction fetches (only type of access)

 MSRDR = 0 results in real addressing mode for
any data accesses, read or write

 MSRIR and MSRDR can exist in any
combination of settings

7

Block Address Translation
 Method of directly mapping large virtual address

spaces to contiguous real memory addresses
 Length must be a power of 2, from 217 to 228

 Controlled by a mask field in the upper register

 Block Length = 217 + (# of bits in mask set)

 Alignment must occur on a multiple of its length

 Defined by 8 CPU special-purpose register pairs
 4 IBAT (Instruction), 4 DBAT (Data)

 Each pair consists of upper and lower register

 Enabled if MSRIR and/or MSRDR = 1

 Great for memory-mapping
 Display buffer, kernel memory, etc.

8

BAT Register Pair

BEPI Block Effective Page Index
BL Block-length Mask

e.g., 0x003 = 217+2=19 (512 KB)
BRPN Block Real Page Number
PP Protection bits for BAT area

00 = No Access, x1 = Read Only, 10 = Read/Write
Vs Supervisor state valid bit -- allows root access
Vp Problem state valid bit -- allows user access
WIMG Storage Access Controls

0 14

BEPI
19

VpVs

3029 31

Upper

Lower

/// BL

0 14

BRPN
25 3029 31

/// WIMG
28

/ PP

15 18

15 24

9

BAT Register Validation

 BAT register valid if these conditions hold:
MSRIR | MSRDR = 1

 (Vs & ~MSRPR) | (Vp & MSRPR) = 1

 Cannot overlap any other register’s EA range
 Unless they cannot be valid at the same time, as per the

relation above

 Translation effects undefined, and probably horrendous, if
conflicting memory state exists

 Page Fault Interrupt on PP R/W permissions fail

10

BAT Translation Method

32-bit EA
0 4 15 31

4

~BL

AND

11 17

15 17

0 4 15 31

15 17

OR

15

32-bit RA

Page Index

Real Page || Offset

143

3 14

BEPI match

Offset

Offset

Offset

BRPN
30 || (EA4:14 & BL)

11

BAT Lookup
 Registers not indexed by bits, but rather

searched sequentially by access type
 Address match (EA covered by BAT) if:
EA0:3 || (EA4:14 & ~BL) = BEPI

 15 bits [0-14] needed at most to determine block
starting address because minimum BAT size is 217

 4 highest order bits not needed in masking
because blocks cannot be this large

 BRPN then OR’d with [30 || (EA4:14 & BL)]
to get remaining page bits from EA

 Offset (EA15:31) added, untouched

12

Example – Data Access

13

Segmented Address Translation

 Storage divided into 256 MB (228)
segments, of ordinary or direct-store type
Ordinary segments controlled by setting of

relocate bits MSRIR and MSRDR

 Used as storage protection

Direct-store segments used for access to I/O
 EA sent to device with key check modification

 MSRDR must be set

 Segments defined by 16 register “table”

14

Segment Register (Ordinary)

T = 0, Direct Store off
Ks Supervisor state storage key

(allows supervisor access)

Kp Problem state storage key
(allows user access)

VSID Virtual Segment ID (24-bit)

0 8

T
31

///Ks Kp
1 2

VSID

15

Segment Register (Direct-Store)

T = 1, Direct Store on

Ks Supervisor state storage key

Kp Problem state storage key

BUID Bus Unit ID

cs Device dependent data for I/O

0 12

T
31

BUIDKs Kp
1 2

controller specific
3

16

20

Segment EA to RA Translation

32-bit EA
0 4 19 31

4 16 12

16 12

0 19 20 31

20 12

32-bit RA

Identify

Segment
Register

SR

Page Index

Byte

52-bit VA
24

Virtual Segment ID Page Remainder Byte

Hashed
Page Table

ByteReal Page Number

Key

API

17

Hashed Page Table
 Variable-sized data structure that hashes between

virtual page numbers and real page numbers
Must be aligned on its 2n size, where 16 ≤ n ≤ 25

 Contains 2n-6 64-byte Page Table Entry Groups
 Each PTEG has 8 PTE entries, each 8 bytes long

 Important to balance: Size of PT and Page Fault Rate

 Exists in main memory
 RA and size defined by Storage Description Register 1

 n, and thus the number of PTEG’s, controlled by OS

 Architecture neutral as to # of PT’s allowed

18

Storage Description Register 1 (32-Bit)

0 23

HTABORG
31

///
15

HTABMASK

HTABORG[0-15] Real Address of Page Table

(Aligned on 216 byte boundary,
meaning minimum size is 64KB)

HTABMASK[23-31] Mask for Page Table Address

(e.g., 0x007 strips 3 bits off of
the hash to allow for 210+3 PTEGs)

19

Hashing VA’s to RA’s
 Key indexed by (VSID derived from segment

register || EA Page Index)
 40-bit key hashes to 20-bit Real Page Number

 High-order 6 bits of EA Page Index referred to as
Abbreviated Page Index, stored in PTE
 API resolves issues with hash function using less than all 16

bits of the page index by comparing the PTE’s API with the
EA’s API, which are the bits potentially not used in the hash

 If the primary hashing of the key fails, a
secondary hash is attempted using the
complement of the original key as its key

 If that fails, a Page Fault Interrupt is taken

20

Page Table Entry

0 1

V
25 26 31

VSID H

0 19

RPN
25 3029 31

/// WIMG
28

/ PP
23 24

R C

API

API Abbreviated Page Index (PTE Collision Disambiguation)
C Change Bit
H Primary / Secondary Hash
PP Page Protection Bits

(00 = No Access, x1 = Read Only, 10 = Read/Write)
R Reference Bit
RPN Real Page Number
V Valid Bit
VSID Virtual Segment ID (PTE Collision Disambiguation)
WIMG Storage Access Control (Cache Control)

24

21

Hashing VA (Primary)
 1) Perform following computation on parameters:

VSID5:23 ^ (30 || EA4:19)
 Denote this as N
 Note that EA4:19 = 16-bit Page Index

 2) Create following address through concatenations:
 SDR10:6 || [(N0:8 & SDR123:31) | SDR17:15] || N9:18 || 60
 Note that, at minimum, 10 lower-order bits of N/Page Index

identify a unique PTEG

 3) This identifies a PTEG. Test PTE’s inside of it for:
 PTEH = 0
 PTEv = 1
 PTEVSID = VA0:23

 PTEAPI = VA24:29

 4) If PTE found build Real Address, else proceed to
Secondary Hash

22

Hashing VA (Secondary)
 1) Perform following computation on parameters:

~(VSID5:23 ^ (30 || EA4:19))
 Denote this as N
 Note that EA4:19 = 16-bit Page Index

 2) Create following address through concatenations:
 SDR10:6 || [(N0:8 & SDR123:31) | SDR17:15] || N9:18 || 60
 Note that, at minimum, 10 lower-order bits of N/Page Index

identify a unique PTEG

 3) This identifies a PTEG. Test PTE’s inside of it for:
 PTEH = 1
 PTEv = 1
 PTEVSID = VA0:23

 PTEAPI = VA24:29

 4) If PTE found build Real Address, else proceed to
Secondary Hash

 5) Else, a Page Fault Interrupt is issued, OS must deal

23

Forming RA

 If the Page Table search succeeds, the
RA is formed by concatenating the RPN
from the PTE with bits 20:31 of the
Effective Address (the “Byte”/offset)

 Failure results in Page Fault Interrupt of
the access type
 Instruction Storage Interrupt
Data Storage Interrupt

24

Example – Data Access

25

A Note on Storage Control
 WIMG bits in BAT registers / PTE’s

W – Write-through
 Stores updates to cache to home storage location

 I – Caching Inhibited
 Ignores on-board caches

M – Memory Coherence
 Forces hardware data coherence, allowing improved

performance in systems in which accesses to storage kept
consistent by hardware are slower than accesses to storage not
kept consistent, assuming software can enforce the required
consistency. If set, hardware must enforce data coherence.

 Paraphrased from The PowerPC Architecture

 G – Guarded Memory
 If set, prevents speculative execution (prefetching)
 Not applicable to Instruction BAT entries

26

Which does the processor use?

 Segment Registers and BAT Registers
accessed in parallel, with BAT taking
precedence if both translations found valid

 If neither lookup is found to be valid, a
Page Fault Interrupt is generated and the
OS must deal with the problem

27

Sources

 The PowerPC Architecture: A Specification For a New Family of
RISC Processors, Morgan Kaufmann Publishers, San Francisco,
1994

