
Interrupt Mechanisms in the 
74xx PowerPC Architecture

Porting Plan 9 to the PowerPC Architecture

Ajay Surie

Adam Wolbach



2

Definitions

 MSRFOO FOO bit of MSR

 SRRx Save/Restore Register X

 [y, z) Memory, spanning y to z

(not including z)



3

Interrupt Classes

 Four Classes of System-Caused Interrupts
 System Reset, Machine Check

 Not maskable

 External, Decrementer (Timer)
 Maskable, taken if MSREE bit is set to 1

 Two Classes of Instruction-Caused Interrupts
 Precise: System calls, most exceptions
 Imprecise: Floating-Point Enabled Exception

 No guarantees with knowing which instruction actually 
caused the exception



4

Interrupt Vectors
 A vector is a region in main memory 

containing the initial sequence of instructions 
to be executed upon taking an interrupt
 Vector location unique to each type of interrupt

 256 bytes / 64 instructions allotted per vector
 Enough to do some register manipulation and call an 

operating system’s handler function

 Not a concrete rule

 [0x0, 0x3000) used for vectors in main memory
 [0x0, 0x1000) used for architecture-defined interrupts

 [0x1000, 0x3000) are implementation-specific



5

Outline of Interrupt Processing

 An interrupt can only occur when it has a higher 
priority level than any currently occurring interrupt

 SRR0 loaded with instruction address depending on 
the type of interrupt
 Generally, tries to identify culprit, or next to execute

 Important bits of MSR (0, 5:9, 16:31) saved in SRR1
 Bits 1:4 and 10:15 contain interrupt-specific information

 MSRIR, DR,PR set to 0
 Virtualization off, kernel mode

 MSRRI set if interrupt is “recoverable”



6

Interrupt “Ordering” and Program State

 System Reset and Machine Check interrupts 
are not “ordered”
 Can occur at any time

 Program state may be lost

 All other interrupts are “ordered”
 Only one interrupt is reported at same time

 When it is processed, no program state is lost

 Save/Restore Register 0 and 1 (SRR0/1)
 Used in the saving of context



7

Important Bits in the MSR

 IP[25]: Interrupt Prefix
 Controls the prefix of where interrupt vectors are 

stored in real memory (0xfffff000 if set, 0x0 if not)

 RI[30]: Recoverable Interrupt
 If this is set on an interrupt, state can be salvaged

 Hardware determines if state is salvageable



8

Plan 9 Interrupt Handling Overview

 All exception vectors contain an instruction 
sequence that calls trapvec(SB) to handle state 
saves / mode changes 

 On an interrupt, virtualization is disabled
 The kernel determines whether a stack switch is 

necessary
 This can be accomplished by determining the mode in 

which the interrupt occurred, stored in SRR1 

 After registers are saved, virtualization is renabled
and the kernel determines the appropriate handler 
to run 



9

Plan 9

 Vector contains instruction sequence to an 
assembly routine that handles the interrupt 

 If the interrupt was in user mode, find the 
wrapper routine 



10

System Reset Interrupt

 Vector location: 0x100 (RA), 256 bytes 

 Can be hardware or software generated

 SRR0 set to EA of instruction that would have 
executed next without this interrupt

 SRR1’s interrupt info set to 0, MSR copied

 “Implementations can provide a means for 
software to distinguish between power-on 
Reset and other types of System Reset”

 Can be recovered from if MSRRI = 1



11

Machine Check Exception
 Vector location: 0x200 (RA), 256 bytes

 Enabled if MSRME = 1 when exception hit
 If MSRME = 0, machine enters Checkstop state

 Caused by hardware dying, temperature problem, or 
possibly by referencing a nonexistent RA
 I think; implementation definitely processor-specific though

 SRR0 set on “best effort” basis to the instruction 
executing when the exception hit

 SRR1 set to processor-specific value

 If storage registers are valid, MSRRI set to 1 and 
resumption of execution can occur



12

External Interrupts

 Vector location: 0x500 (RA), 256 bytes

 Generic for all external hardware interrupts: 
keyboard, mouse, etc, but not timer

 Occurs when MSREE = 1 and an external 
interrupt exception is presented to CPU

 SRR0 contains next instruction to execute, as 
if no interrupt had occurred

 SRR1 set as outlined



13

Decrementer (Timer) Interrupt
 Vector location: 0x900 (RA), 256 bytes

 Decrementer is a 32-bit register that acts as a 
countdown timer, causing an interrupt after passing 
through zero
 Frequency is processor-specific

 Interesting: Speculative execution can possibly read 
decrementer in advance of actual execution, getting old 
value; fixed with an isync before decrementer reads

 Occurs when MSREE = 1 and a decrementer
exception is presented to CPU

 SRR0 contains next instruction to execute, as if no 
interrupt had occurred



14

Plan 9 Clock / Timer

 Decrementer used to maintain ticks since 
boot

 The timer is board specific and is handled as 
an external interrupt
 Causes a context switch every 10 ms



15

System Calls

 Vector location: 0xC00 (RA), 256 bytes

 Occurs when system call instruction executes
 Determining which system call is to be executed is 

something that is handled by the operating system
 In Plan 9, R3 contains the number of the system call 

intended for execution

 SRR0 set to address of instruction after SC

 SRR1’s interrupt info set to 0, MSR copied



16

Plan 9 System Calls

 System calls are all mostly machine 
independent (except fork, exec, etc.)

 A generic system call handler validates user 
stack state, etc. 

 R3 contains the number of the system call to 
be executed

 After the system call executes, the kernel 
places the return value in R3, and restores 
the user mode state



17

Instruction Storage Interrupt
 Vector location: 0x400 (RA), 256 bytes
 Occurs on an instruction fetch when an EA 

cannot be translated, EA is in a direct-store 
segment, or a violation of storage protection

 SRR0 holds faulting instruction’s EA
 SRR11 set if it was a hashed translation miss
 SRR13 set if it was a direct-store segment
 SRR14 set if storage access not permitted
 SRR110 set if segment table failed to find a 

translation



18

Data Storage Interrupt

 Vector location: 0x300 (RA), 256 bytes
 Occurs on direct-store errors with external 

devices, EA translation failures on data loads 
or stores, or a violation of storage protection

 SRR0 set to faulting instruction’s EA
 Data Storage Interrupt Status Register holds 

information specific to DSI type
 Data Address Register set to the EA of the 

data access that failed



19

Less Interesting Interrupts

 Alignment Interrupts
 Load/Store not aligned to size of data type

 Program
 Illegal Instruction, Not privileged

 Trace
 If enabled, occurs after every non-rfi instruction

 Several Floating-Point Exceptions
 Divide-by-zero, etc.



20

Returning From Interruption (IRET)

 To return to normal execution, the following 
needs to occur
 MSRRI set to 0

 SRR0/1 possibly set to values to be used by rfi

 Execute rfi instruction
 SRR1 copied into MSR

 SRR0 copied into Next Instruction Address Register

 Normal execution resumes



21

Precise/Imprecise Interrupts
 Upon taking a precise interrupt:
 SRR0 points to instruction causing the exception or 

some instruction a known distance after it, 
depending on the interrupt’s type
 Guaranteed that all previous instructions have completed, 

and no subsequent instructions have begun processing 
on this processor

 Upon taking an imprecise interrupt:
 SRR0 points to some unknown instruction, either at 

or after the instruction causing the interrupt

 All instruction interrupts are precise, except for 
floating-point enabled exceptions



22

Bibliography

 The book


