

Porting Plan 9 to the PowerPC Architecture

Ian Friedman Ajay Surie Adam Wolbach

Plan 9 http://www.cs.bell-labs.com/plan9dist/

- OS developed by Bell Labs in order to cost-effectively manage large, centralized resources to employees at cheap, less powerful terminals
- Key Features:
 - Centralized resources allow for efficient management/sharing
 - Local name space, regardless of the box in front of you
 - Everything is (theoretically) considered a file, including devices
 - Thus, there exists a unique protocol that accesses everything
 - Cheap for large-scale implementations

Project Additions

- What We Won't Change:
 - Fundamental operating system design
 - Specification of OS remains the same, no new features
- What We Will Add:
 - Compatibility with 32-bit PowerPC architectures
 - Booting with OpenFirmware and BootX/Yaboot
 - Memory Management
 - Device Support: Console I/O, Ethernet
 - This is the type of PowerPC downstairs: 74xx (almost certain of this)
 - Compatibility with 64-bit PowerPC architectures with 32-bit emulation

Resources

412 Lab/Wean Hall 3508 Cluster

- 1 iMac G4
 - 744x Series PowerPC
 - Used for Testing
- 3 Linux "Boxes"
 - Made of miscellaneous parts off the CS pile
 - Reasonably fast
 - Used for Coding/Compiling/Debugging
- Everything we need has been provided

Code Base

- Plan 9 existing PowerPC code
 - C Code ~ 10,000 lines
 - A lot of it is code for different PPC hardware (2 ethernet drivers, Saturn, 8260)
 - Can use Plan 9 common kernel routines (i.e. main.c) and kernel interface to ethernet (~1000 lines)
 - Probably don't need to touch protocol code [TLS 1.0, SSL 3.0] (~2000 lines)
 - Can completely ignore flash related code (BLAST) and UART serial code (~2000 lines)
 - Plan 9 assembly code ~ 1100 lines
 - Not sure how much will need to change

Booting Plan 9

- OpenFirmware
 - Uses Forth as its command interface
 - Provides basic hardware support
 - Loads the kernel for us
 - Can load kernel over TFTP!
 - Once the kernel is loaded, we still need to talk to OF for devices

Booting Plan 9 (cont'd)

- The Task at Hand: Figure out how to talk to OF for device support (console/ethernet)
- Investigating two possibilities:
 - Primary: BootX
 - Darwin's bootloader
 - Not very well documented
 - Secondary/Backup: Yaboot
 - Used by PPC linux distributions
 - Also not very well documented

Memory Management

(based on http://users.rowan.edu/~shreek/fall01/comparch2/lectures/PowerPC.ppt)

- Using PowerPC 740/750 architecture specification (32-bit)
- 2 Memory Management Units
 - Distinctive behaviors for Data and Instruction fetches/translations
 - Each have their own L1 cache
 - Unified L2 cache
- Memory Support
 - Physical Memory: 64 Gigabytes (2³⁶)
 - Virtual Memory: 4 Pentabytes (2⁵²)

Memory Address Translation

- 3 Address Translation Modes
 - Page Address Translation
 - In other words, virtualization via segmentation
 - Translation from 32-bit effective address (EA), to 52-bit virtual address (VA) (by segment table), to 32-bit real/physical address (PA) (by page table)
 - Segment table comprised of 16 on-chip segment registers
 - Segmentation also used as memory-mapping for I/O devices
 - Block Address Translation
 - EA translated to PA via BAT table lookup
 - Table is actually set of pairs of on-chip registers (limiting the number of possible "Blocks"), separate for Data and Instructions
 - Real Addressing Mode
 - Effective Address = Physical Address (i.e., no virtualization)

Figure 5-1. MMU Conceptual Block Diagram—32-Bit Implementations

10

Memory Management

- Documentation:
 - Actual specification:

http://www-3.ibm.com/chips/techlib/techlib.nsf/techdocs/ 852569B20050FF7785256996006C28E2/\$file/7xx_um.pdf

- Google "PowerPC 740 750 RISC Microprocessor"
- IBM Overview:

http://www-306.ibm.com/chips/techlib/techlib.nsf/techdocs/ FBEAAB9F7A288ED787256AE200622214/\$file/PowerPC750FXmpf.pdf

- Google"powerpc 740/750 memory management unit"
- Brief introduction to PPC architecture: http://users.rowan.edu/~shreek/fall01/comparch2/lectures/PowerPC.ppt

Lines of Code to Write

- Bootloader
 - Existing open source code available, may require minor modification
- Memory Management (~300 lines)
- Interrupts / Hardware specific (~350 lines)
- Device Drivers
 - Console (~200 lines depending on available code for PPC)
 - Ethernet (~800 lines)
 - Clock / Timer (~100 lines)
- Total >= 1800 lines

Brief Schedule - Optimistic

- 14 weeks remaining in the semester
- Stage I (2 3 weeks)
 - Understand existing code / architecture
- Stage II (~4 weeks)
 - Open Firmware / Booting (~4 weeks)
 - Memory Management (4 6 weeks)
- Stage III (~3 weeks)
 - Console driver
 - Ethernet driver
 - Integration
- Stage IV (~2 weeks)
 - Debugging / making it work

Issues / Challenges

- Understanding existing code base
 - Poorly documented, module structure unclear (not the way we were taught in 410!)
 - Will probably require more time than we expect
- Understanding Plan 9 assembly
- Integrating new code maintaining the "Plan 9 way" of kernel implementation
- Probably others we haven't thought of...