
Porting Plan 9 to the
PowerPC Architecture

Ian Friedman
Ajay Surie

Adam Wolbach

2

Plan 9
http://www.cs.bell-labs.com/plan9dist/

• OS developed by Bell Labs in order to cost-effectively
manage large, centralized resources to employees at
cheap, less powerful terminals

• Key Features:
– Centralized resources allow for efficient management/sharing

– Local name space, regardless of the box in front of you

– Everything is (theoretically) considered a file, including devices
• Thus, there exists a unique protocol that accesses everything

– Cheap for large-scale implementations

3

Project Additions

• What We Won’t Change:
– Fundamental operating system design

• Specification of OS remains the same, no new features

• What We Will Add:
– Compatibility with 32-bit PowerPC architectures

• Booting with OpenFirmware and BootX/Yaboot

• Memory Management

• Device Support: Console I/O, Ethernet

• This is the type of PowerPC downstairs: 74xx (almost certain of this)

– Compatibility with 64-bit PowerPC architectures with 32-bit
emulation

4

Resources

412 Lab/Wean Hall 3508 Cluster
• 1 iMac G4

– 744x Series PowerPC

– Used for Testing

• 3 Linux “Boxes”
– Made of miscellaneous parts off the CS pile

– Reasonably fast

– Used for Coding/Compiling/Debugging

• Everything we need has been provided

5

Code Base

• Plan 9 existing PowerPC code
– C Code ~ 10,000 lines

• A lot of it is code for different PPC hardware (2 ethernet
drivers, Saturn, 8260)

• Can use Plan 9 common kernel routines (i.e. main.c) and
kernel interface to ethernet (~1000 lines)

• Probably don’t need to touch protocol code [TLS 1.0, SSL
3.0] – (~2000 lines)

• Can completely ignore flash related code (BLAST) and UART
serial code (~2000 lines)

– Plan 9 assembly code ~ 1100 lines
• Not sure how much will need to change

6

Booting Plan 9

• OpenFirmware
– Uses Forth as its command interface

– Provides basic hardware support

– Loads the kernel for us
• Can load kernel over TFTP!

– Once the kernel is loaded, we still need to talk
to OF for devices

7

Booting Plan 9 (cont’d)

• The Task at Hand: Figure out how to talk
to OF for device support
(console/ethernet)

• Investigating two possibilities:
– Primary: BootX

• Darwin’s bootloader
• Not very well documented

– Secondary/Backup: Yaboot
• Used by PPC linux distributions
• Also not very well documented

8

Memory Management
(based on http://users.rowan.edu/~shreek/fall01/comparch2/lectures/PowerPC.ppt)

• Using PowerPC 740/750 architecture
specification (32-bit)

• 2 Memory Management Units
– Distinctive behaviors for Data and

Instruction fetches/translations
• Each have their own L1 cache

• Unified L2 cache

• Memory Support
– Physical Memory: 64 Gigabytes (236)

– Virtual Memory: 4 Pentabytes (252)

9

Memory Address Translation

• 3 Address Translation Modes
– Page Address Translation

• In other words, virtualization via segmentation
– Translation from 32-bit effective address (EA), to 52-bit virtual

address (VA) (by segment table), to 32-bit real/physical
address (PA) (by page table)

– Segment table comprised of 16 on-chip segment registers
– Segmentation also used as memory-mapping for I/O devices

– Block Address Translation
• EA translated to PA via BAT table lookup

– Table is actually set of pairs of on-chip registers (limiting the
number of possible “Blocks”), separate for Data and
Instructions

– Real Addressing Mode
• Effective Address = Physical Address (i.e., no virtualization)

10

11

Memory Management

• Documentation:
– Actual specification:

http://www-3.ibm.com/chips/techlib/techlib.nsf/techdocs/
852569B20050FF7785256996006C28E2/$file/7xx_um.pdf

• Google “PowerPC 740 750 RISC Microprocessor”
– IBM Overview:

http://www-306.ibm.com/chips/techlib/techlib.nsf/techdocs/
FBEAAB9F7A288ED787256AE200622214/$file/PowerPC750FXmpf.pdf

• Google”powerpc 740/750 memory management
unit”

– Brief introduction to PPC architecture:
http://users.rowan.edu/~shreek/fall01/comparch2/lectures/PowerPC.ppt

12

Lines of Code to Write

• Bootloader
– Existing open source code available, may require minor

modification

• Memory Management (~300 lines)
• Interrupts / Hardware specific (~350 lines)
• Device Drivers

– Console (~200 lines – depending on available code for PPC)
– Ethernet (~800 lines)
– Clock / Timer (~100 lines)

• Total >= 1800 lines

13

Brief Schedule - Optimistic

• 14 weeks remaining in the semester
• Stage I (2 – 3 weeks)

– Understand existing code / architecture

• Stage II (~4 weeks)
– Open Firmware / Booting (~4 weeks)
– Memory Management (4 – 6 weeks)

• Stage III (~3 weeks)
– Console driver
– Ethernet driver
– Integration

• Stage IV (~2 weeks)
– Debugging / making it work

14

Issues / Challenges

• Understanding existing code base
– Poorly documented, module structure unclear

(not the way we were taught in 410!)
– Will probably require more time than we

expect

• Understanding Plan 9 assembly
• Integrating new code – maintaining the

“Plan 9 way” of kernel implementation
• Probably others we haven’t thought of…

