
1

A Bit About Forth

Dave Eckhardt
de0u@andrew.cmu.edu

2

Disclaimer

� I don't know Forth

� Typical Forth tutorial

� Stack, postfix stack operators

� Writing a simple Forth word

� Loops

� Stack manipulation, simple built-ins

� Gee, tutorials take forever to write, so close with:

� 100%-inscrutable example using Forth's full power

� I am ~40% through the inscrutable stage

3

Outline

� Forth is a language with

� No syntax1

� No operator precedence

� No operators

� No functions

� No variables

� No constants

� No loops2

4

No Syntax

� Well, hardly any

� Whitespace-delimited sequence of digits (in the
current input radix) is recognized as a number.

� In many dialects, a dot in a number is allowed for
readability or to signal double precision

� Whitespace-delimited sequence of characters is
a word.

5

Syntax Examples

� 123

� FFEB.09CA

� >entry

� 2dup

� $entry

� *, +, -, /, etc.

6

No Operator Precedence

� Easy: no operators!

� In C, + and && and || are part of the language

� So the language arranges for them to be
evaluated according to “natural” precedence
(more or less)

� In Forth, all executable things are of the
same class (“words”)

� Precedence is manual (postfix stack ops)

7

Stack Operations

3 4 +

� Push 3 onto the stack.

� Then push 4 onto the stack.

� Run +

� Which traditionally pops two things from the stack,
adds them, and pushes the result on the stack. But it
could be redefined to do anything else instead.

� “3 + 4 * 2” - meaning is up to you, not Forth
3 4 2 * +
3 4 + 2 *

8

No Functions

� Words aren't functions

� They have no types

� No parameter types

� Pull whatever they want off the stack

� First parameter may determine how many parameters

� No return types

� Push whatever they want onto the stack

� Common idiom:

� success ⇒ push answers, then push “true” (-1)

� failure ⇒ push “false” (0)

� Actually, nothing has any types

9

No Types

� What is the type of items on the stack?

� “Cell” - approximately “machine word”

� Same type as BLISS (great-grandfather of C,
used to write DEC's VMS, CMU's Hydra)

� Some words operate on multiple cells
(extended precision)

10

No Variables

� Most code operates on stack values

� Once you have “too many” values on your
stack your code gets confusing

� There is a word called VARIABLE

� It doesn't “declare” a “variable”, though.

� It allocates a cell and compiles a word which
pushes the address of that cell on the stack.

VARIABLE FOO
FOO @ 3 + \ Add 3 to contents of FOO

11

VALUE

� If a “variable” will be read more than written,
you can use VALUE instead.

� It places a value into a freshly-allocated cell and
compiles a word which fetches the contents of
the cell and pushes it on the stack

0 value BAR
BAR 3 + \ Add 3 to contents of BAR
4 TO BAR \ sets BAR to 4 - advanced

12

No Constants

� There is a word called CONSTANT, though.

� Can you guess what it does?

13

No Loops

� The language does provide words which
implement loops
10 1 DO I . CR LOOP

� But these words aren't privileged – you can
write your own which work just as well.

� UNLESS, UNTIL, WHEREAS... - go wild!

14

Is There Anything There?

� No...

� No syntax1

� No operator precedence

� No operators

� No functions (no types)

� No variables

� No constants

� No loops2

� So what is there?

15

Parts of Forth

� “The Stack”

� Really: the operand stack

� The other stacks

� Call/return stack – (ab)used by loop words

� Exception stack – if exceptions are available

� The Dictionary

� Maps word names to execution tokens

� The “Compiler”

� The “Interpreter” (read loop) 16

“Compiler”

� “Compiler” stitches together code bodies of
existing words
: addone 1 + ;

� Not a “function definition” which begins with
the “:? token and ends with the “;” token

� : grabs a word from the input stream, saves it
“somewhere”, and turns on the compiler

� The compiler creates code sequences for
pushing numbers and pushing calls to words

17

“Compiler”

� ; stops the compiler and adds a dictionary
entry mapping the name token to the
execution-token sequence

� Where's the code?

� Here comes a vague analogy...

� ...C code which when compiled would have
similar effect to Forth...

18

The Code

/* “threaded code” style */

typedef void (*notfun)(void);
notfun push1, plus;
notfun addone[] = { push1, plus, 0 };

void execute(notfun a[])
{
 while (a[0])
 *(a[0])();
}

19

Threaded Code

� Easy to generate machine code which just
calls other machine code

� Also easy to generate machine code for
“push integer onto stack”

� Handful of built-in words must be written in
assembly language

� Peek, poke (@, !)

� +, -, *, /

� Compiler itself
20

Isn't Threaded Code Slow?

� Other organizations possible

� Can peephole-optimize threaded code pretty
well

� Can “cache” top N words of stack in registers

� Can do real optimizing compiler if you want

21

Are We Having Fun Yet?

� Why would people do this?

� Great for memory-constrained environments

� Forth runtime, including compiler, editor, “file system”,
“virtual memory” can be implemented in a few
kilobytes of memory

� Stacks very small for real applications (small number
of kilobytes)

� Very extensible

� Want software VM? Just redefine @, !

� “Hard” things may be trivial

� De-compiling Forth is often very easy...
22

Are We Having Fun Yet?

� Why would people do this?

� A trained person can bring up a Forth runtime on
just about any system in around a week given
assembly-language drivers for keyboard and
screen

� GCC+glibc ports to new processors typically
take a little longer than that...

23

Is Forth Usable?

� It's missing:

� types, type-checking, pointer-checking

� How can code written this way work?

� Oddly enough, very well.

� Forth advocates claim it promotes careful
thought. Also, most words are short enough to
be solidly tested.

� Another slant: No way to avoid paying attention.

� Another slant: anybody who can wrap their mind
around it is a very good programmer...

24

Curiousity or Language?

� Who uses this?

� OpenFirmware (every Macintosh since...1996?)

� PostScript allegedly inspired by Forth

� Embedded firmware

� Astronomers...since the 1960's

� Lots of things in space run Forth

� http://forth.gsfc.nasa.gov – very partial list

25

Who Should Learn Forth?

� Long-hair hacker types might find it fun

� Embedded-systems programmers might find
it useful

� CS majors might find it challenging

26

Further Reading

� Forth - The Early Years

� http://www.colorforth.com/HOPL.html

� The Evolution of Forth

� http://www.forth.com/resources/evolution/

