A Bit About Forth

Dave Eckhardt
deQu@andrew.cmu.edu

Disclaimer

* | don't know Forth
* Typical Forth tutorial
- Stack, postfix stack operators
- Writing a simple Forth word
- Loops
- Stack manipulation, simple built-ins

- Gee, tutorials take forever to write, so close with:
* 100%-inscrutable example using Forth's full power

* | am ~40% through the inscrutable stage

Outline

* Forth is a language with

~ No syntax1

- No operator precedence
* No operators

- No functions

- No variables

- No constants

~ No Ioop52

No Syntax

* Well, hardly any
- Whitespace-delimited sequence of digits (in the
current input radix) is recognized as a number.

* In many dialects, a dot in a number is allowed for
readability or to signal double precision
- Whitespace-delimited sequence of characters is
a word.

Syntax Examples

123
FFEB.09CA
* >entry

e 2dup

* $entry

e * 4+ -, /, etc.

No Operator Precedence

* Easy: no operators!

In C, + and && and || are part of the language

- So the language arranges for them to be
evaluated according to “natural” precedence
(more or less)

In Forth, all executable things are of the
same class (“words”)

Precedence is manual (postfix stack ops)

Stack Operations

34+

- Push 3 onto the stack.

- Then push 4 onto the stack.
- Run +

¢ Which traditionally pops two things from the stack,
adds them, and pushes the result on the stack. But it
could be redefined to do anything else instead.
* “8+4*2” - meaning is up to you, not Forth

34 2 * +
34 + 2 *

No Functions

* Words aren't functions

- They have no types

* No parameter types
- Pull whatever they want off the stack
- First parameter may determine how many parameters
* No return types
- Push whatever they want onto the stack
- Common idiom:
* success = push answers, then push “true” (-1)
* failure = push “false” (0)

- Actually, nothing has any types

No Types

* What is the type of items on the stack?
- “Cell” - approximately “machine word”

- Same type as BLISS (great-grandfather of C,
used to write DEC's VMS, CMU's Hydra)

* Some words operate on multiple cells
(extended precision)

No Variables

* Most code operates on stack values

* Once you have “too many” values on your
stack your code gets confusing

* There is a word called VARIABLE

- It doesn't “declare” a “variable”, though.

- It allocates a cell and compiles a word which
pushes the address of that cell on the stack.

VARIABLE FOO
FOO @ 3 + \ Add 3 to contents of FOO

10

VALUE

* |f a “variable” will be read more than written,
you can use VALUE instead.
- It places a value into a freshly-allocated cell and

compiles a word which fetches the contents of
the cell and pushes it on the stack

0 value BAR
BAR 3 4+ \ Add 3 to contents of BAR
4 TO BAR \ sets BAR to 4 - advanced

11

No Constants

* There is a word called CONSTANT, though.
- Can you guess what it does?

12

No Loops

* The language does provide words which
implement loops

10 1 DO I . CR LOOP

* But these words aren't privileged — you can
write your own which work just as well.

- UNLESS, UNTIL, WHEREAS... - go wild!

13

Is There Anything There?

* No...

~ No syntax1

- No operator precedence
* No operators

- No functions (no types)

- No variables

- No constants

~ No Ioop52
* So what /s there?

14

Parts of Forth

* “The Stack”
- Really: the operand stack
* The other stacks
- Call/return stack — (ab)used by loop words
- Exception stack — if exceptions are available
* The Dictionary
- Maps word names to execution tokens
* The “Compiler”
* The “Interpreter” (read loop) 15

“Compiler”

* “Compiler” stitches together code bodies of
existing words
: addone 1 + ;

* Not a “function definition” which begins with
the “:? token and ends with the “;” token

* : grabs a word from the input stream, saves it
“somewhere”, and turns on the compiler

* The compiler creates code sequences for
pushing numbers and pushing calls to words

16

“Compiler”

* ; stops the compiler and adds a dictionary
entry mapping the name token to the
execution-token sequence

* Where's the code?

- Here comes a vague analogy...

- ...C code which when compiled would have
similar effect to Forth...

17

The Code

/* “threaded code” style */

typedef void (*notfun) (void);
notfun pushl, plus;
notfun addone[] = { pushl, plus, 0 };

void execute (notfun afll])
{

while (a[0])

*(al01) ()

18

Threaded Code

* Easy to generate machine code which just
calls other machine code

* Also easy to generate machine code for
“push integer onto stack”

* Handful of built-in words must be written in
assembly language
- Peek, poke (@, !)
-+, %/
- Compiler itself
19

Isn't Threaded Code Slow?

* Other organizations possible

- Can peephole-optimize threaded code pretty
well

- Can “cache” top N words of stack in registers
- Can do real optimizing compiler if you want

20

Are We Having Fun Yet?

* Why would people do this?

- Great for memory-constrained environments

¢ Forth runtime, including compiler, editor, “file system”,
“virtual memory” can be implemented in a few
kilobytes of memory

* Stacks very small for real applications (small number
of kilobytes)

- Very extensible
¢ Want software VM? Just redefine @, !
- “Hard” things may be trivial

¢ De-compiling Forth is often very easy...)1

Are We Having Fun Yet?

* Why would people do this?

- A trained person can bring up a Forth runtime on
just about any system in around a week given
assembly-language drivers for keyboard and
screen

- GCC+glibc ports to new processors typically
take a little longer than that...

22

Is Forth Usable?

* It's missing:
- types, type-checking, pointer-checking
* How can code written this way work?
- Oddly enough, very well.

- Forth advocates claim it promotes careful
thought. Also, most words are short enough to
be solidly tested.

- Another slant: No way to avoid paying attention.

- Another slant: anybody who can wrap their mind

around it is a very good programmetr... ’;

Curiousity or Language?

* Who uses this?
- OpenFirmware (every Macintosh since...19967)
- PostScript allegedly inspired by Forth
- Embedded firmware
- Astronomers...since the 1960's

- Lots of things in space run Forth
* http://forth.gsfc.nasa.gov — very partial list

24

Who Should Learn Forth?

* Long-hair hacker types might find it fun

* Embedded-systems programmers might find
it useful

* CS majors might find it challenging

25

Further Reading

* Forth - The Early Years
- http://www.colorforth.com/HOPL.html
* The Evolution of Forth
- http://www.forth.com/resources/evolution/

26

