
1

Introduction to 15-412

Dave Eckhardt
de0u@andrew.cmu.edu

2

Synchronization

� Textbook

� Bookstore has copies of The Practice of Programming

� It's not really a textbook

� But you should know everything in it

� Excellent bed-time reading

3

Outline

� Introductions

� [If not now, when?]

� Administrative information

� Class goals

� Reading material

4

Information Sources

� Web site http://www.cs.cmu.edu/~412

� See syllabus

� Coming to class

� Vital, at least initially

� Later, one class per week may be “project time”



5

Academic Conduct

� I firmly expect everybody knows the rules

� A 412-specific issue: licenses

� We need to pay attention to them and follow them

� No disassembling Microsoft products!

� Code transfers between projects must be

� Credited appropriately

� In compliance with both licenses

� Code is probably better as a textbook than as building 
material

6

Course Goals

� Hands-on experience with “OS” code in real 
world

� Build environments

� Portability issues

� People issues

� Contributing something to the global software 
community...

� Something useful – submission-quality

7

Course Goals

� “Research” is a mild anti-goal

� 15-712 is a standard grad OS class

� Core target of grad-school research is scientific

� Evaluating a hypothesis or proposal

� Need a prototype good enough to measure

� Rarely good enough to use.

� Notable local exceptions: AFS, Mach, Coda

8

Course Goals

� Meanwhile...

� Employers want somebody who can write a device-
driver today.

� ...As part of a large OS (or network OS) project...

� ...Based on incomplete documentation...

� ...Dealing with buggy hardware...

� The world has lots of (quality) low-level software still 
unwritten.



9

Course Plan

� Lectures

� Not entirely

� Some initial start-up lectures

� Extended answers to technical questions

� (so bring some to class)

� Discussion of interesting papers

� Status updates, mini-presentations, design sessions

10

Course Plan

� Projects

� I have some suggestions

� Security, file systems, networking, “ pure kernel”

� Proposing your own project is encouraged 

� Two samples

� Jonathan Curley – OpenAFS fixes for Linux 2.6

� Chaokuo Lin – overlay file system for Plan 9

11

Course Plan

� Project Proposal

� 1-page

� What existing code does

� What you want to add

� Who else is working in the area

� Lines of code (entire project, broken down by area)

� Lines of code (you expect to write)

� Relevant licenses

� Web resources

� Standard acceptance process for code in this project 12

Unit Count

� What is 9 units?

� Can be a solid accomplishment

� Can also be “ lost in the shuffle”

� Numbers

� Subtract 3 hours per week in class (probably less)

� 6 hours/week * 15 weeks = 90 hours

� 90 hours/week = 20 hours/week * 4.5 weeks

� Half-time seasoned kernel hacker for a month

� Roughly enough time for two people to bang out first Unix



13

Time Recommendation

� Schedule joint work sessions

� Minimum of 3 hours per session

� Two to three times per week

� Schedule means set time, for real

� Will make better use of lab space

� Will make it easier for me to drop by

14

Grading “ Philosophy”

� You shouldn't be here unless you are...

� technically solidly prepared

� inspired by the area of endeavor

� committed to taking pride in your work

� Sounds like a recipe for success!

15

Grading Mechanisms

� Smaller pieces

� Proposal (final version), web page

� Twice-a-week status “ blog”

� Mini-presentation

� More important

� Code accomplishments

� Code quality (“ invisibly improve” )

� Code review

� Testing approach
16

For Next Time

� Readings

� (please don't rush through them over lunch just before 
class)

� Wednesday

� Plan 9 from Bell Labs

� http://cm.bell-labs.com/sys/doc/9.pdf

� Friday

� Lampson, Hints for Computer System Design

� http://research.microsoft.com/~lampson/33-hints/WebPage.html


