“Real concurrency – in which one program actually continues to function while you call up and use another – is more amazing but of small use to the average person. How many programs do you have that take more than a few seconds to perform any task?” – NYT, 4/25/1989
Synchronization

Partner sign-up!
- Approximately 6 students un-partnered
- When I spam, I will treat half-registered groups as un-registered

Project 1
- By end of Wednesday...
 - Console (output) should be “doing something”, “not far”
 - Should have “some progress” for kbd, timer
 » Should really have at least “solid design”
 » Better to have handled one interrupt once

Write good code
- Console driver will be used (*and extended*) in P3
Synchronization

Simics issues

- Simics doesn't simulate time with 100% accuracy
 - Mentioned in handout, but:
 - Sometimes it runs slower (“of course”)
 - Sometimes it runs faster (!)
- Simics doesn't blink
 - Not your fault
- Arrow keys may not work “so well”
 - If you get a strange message, tell us about your setup
 - Crash box!
Readings

Textbook chapters

- OSC
 - Already: Chapters 1 through 3
 - Today: Chapter 4 (roughly)
 - Soon: Chapters 6 & 7
 » Transactions (6.9) will be deferred

- OS:P+P
 - Already: Chapters 1 through 3
 - Today: Chapter 4 (roughly/partly)
 - Soon: Chapter 6
Book Report Goals

There's more than one way to do it
Habituation
Writing skills (a little!)
Graduate school
Life
Book Report Goals

There's more than one way to do it

- But you don't have time to try all the ways in 410
- Reading about other ways is good, maybe fun

Habituation

- Long-term career development requires study

Writing skills (a little!)

- “Summarizing” a book in a page is tough
Book Report Goals

Some of you are going to grad. school
Some of you are wondering about grad. school
Some of you are in grad. school
 - You should be able to read a Ph.D. dissertation

More generally
 - Looking at something in depth is different
 - Not like a textbook
Book Report

Read the “handout”

Browse the already-approved list

Pick something (soon)
 - “Don't make me stop the car...”

Read a bit before you sleep at night
 - or: before you sleep in the morning
 - and/or: Thanksgiving break / Spring break

Assignment recommended by previous OS students!
 - They recommend starting early, too
Road Map

Thread lecture

Synchronization lectures
- Probably *three*

Yield lecture

This is important
- When you leave here, you will use threads
- Understanding threads will help you understand the kernel

Please make sure you *understand* threads
- We'll try to help by assigning you P2
Outline

Thread = schedulable registers
 - (that's all there is)

Why threads?

Thread flavors (ratios)

(Against) cancellation

Race conditions
 - 1 simple, 1 ouch
 - Make sure you really understand this
Single-threaded Process

Stack

Heap

Data

Code

Registers

stdin

stdout

timer
Multi-threaded Process(?)

- Stack
- Registers
- Heap
- Data
- Code
- Stack
- Registers
- Registers
- stdio
- stdout
- timer
What does that *mean*?

Three stacks
- Three sets of “local variables”

Three register sets
- Three stack pointers
- Three %eax's (etc.)

Three *schedulable RAM mutators*
- (heartfelt but partial apologies to the ML crowd)

Three potential bad interactions
- A/B, A/C, B/C ... this pattern gets worse fast...
Why threads?

- Shared access to data structures
- Responsiveness
- Speedup on multiprocessors
Shared access to data structures

Database server for multiple bank branches
- Verify multiple rules are followed
 - Account balance
 - Daily withdrawal limit
- Multi-account operations (transfer)
- Many accesses, each modifies tiny fraction of database

Server for a multi-player game
- Many players
- Access (& update) shared world state
 - Scan multiple objects
 - Update one or two objects
Shared access to data structures

Process per player?
- *Processes* share objects only via system calls
- Hard to make game objects = operating system objects

Process per game object?
- “Scan multiple objects, update one”
- Lots of message passing between processes
- Lots of memory wasted for lots of processes
- *Slow*
Shared access to data structures

Thread per player
- Game objects inside single memory address space
- Each thread can access & update game objects
- Shared access to OS objects (files)

Thread-switch is cheap
- Store N registers
- Load N registers
Responsiveness

“Cancel” button vs. decompressing large JPEG

- Handle mouse click *during* 10-second process
 - Map (x,y) to “cancel button” area
 - Change color / animate shadow / squeak / ...
 - Verify that button-release happens in button area of screen

- ...without JPEG decompressor understanding clicks

- Actually *stopping* the decompressor is a separate issue
 - Threads allow the user to register intent while it's running
Multiprocessor speedup

More CPUs can't help a single-threaded process!

PhotoShop color dither operation

- Divide image into regions
- One dither thread per CPU
- Can (sometimes) get linear speedup
Kinds of threads

User-space (N:1)
Kernel threads (1:1)
Many-to-many (M :N)
User-space threads (N:1)

Internal threading
- Thread library adds threads to a process
- Thread switch “just swaps registers”
 - Small piece of asm code
 - Maybe called yield()
User-space threads (N:1)

+ No change to operating system
- Any system call probably blocks all “threads”
 - “The process” makes a system call
 - Kernel blocks “the process”
 - (special non-blocking system calls can help)
- “Cooperative scheduling” awkward/insufficient
 - Must manually insert many calls to yield()
- Cannot go faster on multiprocessor machines
Pure kernel threads (1:1)

OS-supported threading
- OS knows thread/process ownership
- Memory regions shared & reference-counted
Pure kernel threads (1:1)

“Every thread is sacred”
- Kernel-managed register set
- Kernel stack for when the thread is running kernel code
- “Real” (timer-triggered) scheduling

Features
+ Program runs faster on a multiprocessor
+ CPU-hog threads don't get all the CPU time
- User-space libraries must be rewritten to be “thread safe”
- Requires more kernel memory
 - 1 PCB ⇒ 1 TCB + N tCB's,
 - 1 k-stack ⇒ N k-stacks
Many-to-many (M:N)

Middle ground
- OS provides kernel threads
- M user threads *share* N kernel threads

Diagram:
- Stack arrows pointing down
- Heap and Data
- Code
- Registers
Many-to-many (M:N)

Sharing patterns

- Dedicated
 - User thread 12 owns kernel thread 1
- Shared
 - 1 kernel thread per hardware CPU
 - Each kernel thread executes next runnable user thread
- Many variations, see text

Features

- Great when all the schedulers work together as you expected!
(Against) Thread Cancellation

Thread cancellation
- We don't want the result of that computation
 - (“Cancel button”)
- Two kinds – “asynchronous”, “deferred”

Asynchronous (immediate) cancellation
- Stop execution *now*
 - Run 0 more instructions (at least, in user space)
 - Free stack, registers
 - Poof!
- Hard to garbage-collect resources (open files, ...)
- Difficult to maintain data-structure consistency!
(Against) Thread Cancellation

Deferred ("pretty please") cancellation
- Write down “Dear Thread #314, Please go away.”
- Threads must check for cancellation
- Or define safe cancellation points
 - “Any time I call close() it's ok to zap me”

The only safe way
- Unless your threads are running very unusual code!
Race conditions

What you think

ticket = next_ticket++; /* 0 ⇒ 1 */

What really happens (in general)

ticket = temp = next_ticket; /* 0 */
++temp; /* 1, but not visible */
next_ticket = temp; /* 1 is visible */
Murphy's Law (of threading)

The world may \textit{arbitrarily interleave} execution

- Multiprocessor
 - N threads executing instructions \textit{at the same time}
 - Of course effects are interleaved!
- Uniprocessor
 - Only one thread running at a time...
 - But N threads runnable, timer counting down toward zero...

The world will choose the \textit{most painful} interleaving

- “Once chance in a million” happens every minute
Race Condition – Your Hope

<table>
<thead>
<tr>
<th>Thread 0</th>
<th>Thread 1</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>tkt = tmp = n_tkt;</code></td>
<td>0</td>
</tr>
<tr>
<td><code>++tmp;</code></td>
<td>1</td>
</tr>
<tr>
<td><code>n_tkt = tmp;</code></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td><code>tkt = tmp = n_tkt;</code></td>
</tr>
<tr>
<td></td>
<td><code>++tmp;</code></td>
</tr>
<tr>
<td></td>
<td><code>n_tkt = tmp;</code></td>
</tr>
</tbody>
</table>

Thread 0 has ticket 0, Thread 1 has ticket 1.

`next_ticket` has value 2.

Your boss is happy.
Race Condition – Your Bad Luck

<table>
<thead>
<tr>
<th>Thread 0</th>
<th>Thread 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{tkt = tmp = n_tkt;}</td>
<td>0</td>
</tr>
<tr>
<td>\texttt{++tmp;}</td>
<td>1</td>
</tr>
<tr>
<td>\texttt{n_tkt = tmp;}</td>
<td>1</td>
</tr>
<tr>
<td>\texttt{tkt = tmp = n_tkt;}</td>
<td>0</td>
</tr>
<tr>
<td>\texttt{++tmp;}</td>
<td>1</td>
</tr>
<tr>
<td>\texttt{n_tkt = tmp;}</td>
<td>1</td>
</tr>
</tbody>
</table>

Thread 0 has ticket 0, Thread 1 has ticket 0.

\texttt{next_ticket} has value 1.

Your boss is not entirely happy.
What happened?

Each thread did “something reasonable”
- ...assuming no other thread were touching those objects
- ...that is, assuming “mutual exclusion”

The world is cruel
- Any possible scheduling mix will happen sometime
- The one you fear will happen...
- The one you didn't think of will happen...
The `#! shell-script` hack

What's a “shell script”?

- A file with a bunch of (shell-specific) shell commands
 - `#!/bin/sh`
 - `echo “My hovercraft is full of eels.”`
 - `sleep 10`
 - `exit 0`

- Or: a security race-condition just waiting to happen...
The #! shell-script hack

What's "#!"?
- A venerable hack

You say
- `execl("/foo/script", "script", "arg1", 0);`

/foo/script “executable file” begins...
- `#!/bin/sh`

The kernel rewrites your system call...
- `execl("/bin/sh" "/foo/script" "arg1" , 0);`

The shell does
- `open("/foo/script", O_RDONLY, 0);`
The setuid invention

U.S. Patent #4,135,240
- Dennis M. Ritchie
- January 16, 1979

The concept
- A program with stored privileges
- When executed, runs with two identities
 - invoker's identity
 - program owner's identity
- Can switch identities at will
 - Open some files as invoker
 - Open other files as program-owner
Setuid example - printing a file

Goals

- Every user can queue files
- Users cannot delete other users' files

Solution

- Queue directory owned by user printer
- Setuid queue-file program
 - Create queue file as user printer
 - Copy joe's data as user joe
- Also, setuid remove-file program
 - Allows removal only of files you queued
- User printer mediates user joe's queue access
Race Condition Example

<table>
<thead>
<tr>
<th>Process 0</th>
<th>Process 1</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ln -s /bin/lpr /tmp/lpr</code></td>
<td><code>Run /tmp/lpr</code></td>
</tr>
<tr>
<td></td>
<td><code>[setuid to user “printer”]</code></td>
</tr>
<tr>
<td></td>
<td><code>Start "bin/sh /tmp/lpr ..."</code></td>
</tr>
<tr>
<td><code>rm /tmp/lpr</code></td>
<td><code>script = open("/tmp/lpr");</code></td>
</tr>
<tr>
<td><code>ln -s /my/exploit /tmp/lpr</code></td>
<td><code>Execute /my/exploit</code></td>
</tr>
</tbody>
</table>
What happened?

Intention
- Assign privileges to program contents

What happened?
- First, name was mapped to privileges
 - (name \Rightarrow file, file \Rightarrow privileges)
- Next, program name was re-bound to a different file
- Then, name was mapped to contents
 - (name \Rightarrow different file, different file \Rightarrow different contents)

How would you fix this?
How to solve race conditions?

Carefully analyze operation sequences

Find subsequences which must be *uninterrupted*
 - “Critical section”

Use a *synchronization mechanism*
 - Next time!
Summary

Thread: What, why

Thread flavors (ratios)

Race conditions
 - Make sure you really understand this
Further Reading

Setuid Demystified
- Hao Chen, David Wagner, Drew Dean
- “Abandon hope all ye who enter here”

The “cancel button problem”
- “Attentiveness: Reactivity at Scale”
 - Gregory S. Hartman
 - CMU-ISR-10-111.pdf
 - (on the book-report list)