“Luckily the stack is a simple data structure.”

The Process
Jan. 25, 2017

Dave Eckhardt
Synchronization

Project 0 due Friday

- 4 students have already turned something in
 - Turning something in early is a good idea
 - Please see hand-in instructions on P0 web page

P2/P3/P4 partners

- 17 groups have signed up (to some extent)
 » BOTH PARTNERS must register
- Already know who your partner is?
 - Please register now
 - It makes it easier for others to partner
 - It will stem the tide of annoying reminder e-mail
Synchronization

Reminders on collaboration

- Project 1 will be *individual*
- Talking about code is ok
- Possessing the code of another is *not ok*
- Different classes have different policies
- We expect you to read and follow the policies of *this* class
 - (As found in the syllabus, which you are required to read)
 - If something is unclear, please mail us
Synchronization

What is source code “for”?

- What is done with it?
Synchronization

The purpose of code is for people to read

- By a reviewer / security auditor
- By your group
- By your manager
- By your successor
- By you six months later (6 hours later if no sleep)

Oh, yeah, the compiler reads it too
Synchronization

Anybody reading comp.risks?

This lecture

- OSC: Chapter 3, but not exactly!
 - We are skipping 3.5 and 3.6, including the terrifying “POSIX Shared Memory”
- OS:P+P: Sections 3.1-3.3, but not exactly
Outline

Process as pseudo-machine
 - (that's *all* there is)

Process life cycle

Process kernel states

Process kernel state

P1/P3 memory layout
 - (just a teaser for now)
A Computer

Stack

Program

Registers

Keyboard

Screen

Timer
A Process

Stack

Heap
Data
Code

 Registers

stdin
stdout
timer
Process life cycle

Life cycle

- Birth
 - (or, well, fission)
- School
- Work
- Death

Nomenclature

- courtesy of The Godfathers [1988]
Birth

Where do new processes come from?
- (Not: under a cabbage leaf, by stork, ...)

What do we need?
- Memory contents
 - Text, data, stack
- CPU register contents (N of them)
- “I/O ports”
 - File descriptors, e.g., stdin/stdout/stderr
- Hidden “stuff”
 - timer state, current directory, umask
Birth

Intimidating?

How to specify all of that stuff?

- What is your \{name,quest,favorite_color\}?

Gee, we already have one process we like...

- Maybe we could use its settings to make a new one...
- Birth via “cloning”
Birth – fork() - 1

“fork” - Original Unix process creation system call

Memory
 - Copy all of it
 - Later lecture: VM tricks may make copy cheaper

Registers
 - Copy all of them
 - All but one: parent learns child’s process ID, child gets 0
Birth – fork() - 2

File descriptors
- Copy all of them
- Can't copy the *files*!
- Copy *references* to open-file state

Hidden stuff
- Do whatever is "obvious"

Result
- Original, “parent”, process
- Fully-specified “child” process – despite 0 parameters to fork()
Now what?

Two copies of the same process is *boring*

Transplant surgery!

- Implant new memory!
 - New program text
- Implant new registers!
 - Old ones don't point well into the new memory
- Keep (most) file descriptors
 - Good for cooperation/delegation
- Hidden state?
 - Do what's “obvious”
Original Process

Stack

Heap

Data

/bin/sh

Registers

stdin

stdout

timer t=4
Toss Heap, Data

Stack

/proc/self/exe

Registers

(stdin, stdout, timer t=4)

/bin/sh
Load New Code, Data From File

Stack

Data
/u/b/gcc

Registers

stdin
stdout
timer t=4
Reset Stack, Heap

Stack

[Heap]
Data /u/b/gcc

Registers

stdin
stdout
timer t=4
Fix “Stuff”

Stack

[Heap]
Data
/u/b/gcc

Registers

stdin
stdout
timer off
Initialize Registers

Stack

[Heap]
Data /u/b/gcc

Registers

stdin
stdout
timer off
Begin Execution

Stack

Heap
Data
/u/b/gcc

Registers

stdin
stdout
timer off
What's The Implant Procedure Called?

```c
int execve(
    char *path, 
    char *argv[ ],
    char *envp[ ])
```
Birth - other ways

There is another way
 ▪ Well, two

spawn()
 ▪ Carefully specify all features of new process
 ▪ Complicated
 ▪ Win: don't need to copy stuff you will immediately toss

Plan 9 rfork() / Linux clone()
 ▪ Build new process from old one
 ▪ Specify which things get shared vs. copied
 ▪ “Copy memory, share files, copy environment, share ...”
Old process called

execve(
 char *path,
 char *argv[],
 char *envp[]);

Result is

main(int argc,
 char *argv[],
 char *envp[])
{
 ...
}

School

How does the magic work?

- 15-410 motto: No magic

Kernel process setup: we saw...

- Toss old data memory
- Toss old stack memory
- Load executable file

Also...
The Stack!

Kernel builds new stack for the process

- Transfers argv[] and envp[] to top of new stack
- Hand-crafts stack frame for ~main()
- Sets registers
 - Stack pointer (to top frame)
 - Program counter (to start of ~main())
Work

Process states

- Running
 - User mode or kernel mode
- Blocked
 - Awaiting some event
 » I/O completion, exit of another process, message, ...
 » Maybe sleeping for a fixed period of time
 - Scheduler: “do not run”
 - Q: User mode, kernel mode, both, neither?
- Runnable
 - Q: User mode, kernel mode, both, neither?
 » Be sure to understand this
Work

Other process states

- Forking
 - Obsolete, once used for special treatment
- Zombie
 - Process has called exit(), parent hasn't noticed yet

“Exercise for the reader”

- Draw the state transition diagram
Death

Voluntary

\[
\text{void exit(int reason);}
\]

Hardware exception

- SIGSEGV - no memory there for you!

Software exception

- SIGXCPU – used "too much" CPU time
Death

System call - \texttt{kill(pid, sig)};

- “Deliver \texttt{sig} to process \texttt{pid}”
 - (negative values of \texttt{pid} have “interesting” behaviors)
- Keyboard \texttt{^C} ⇒ equivalent of
 - \texttt{kill(getpid(), SIGINT)};
- Start/stop logging
 - \texttt{kill(daemon_pid, SIGUSR1)};
 - \texttt{% kill _USR1 33}
 - \texttt{% kill _USR2 33}
- This is a “non-kill” use of \texttt{kill()}
- Any other key uses of \texttt{kill()}?
Death

System call - kill(pid, sig);

- “Deliver sig to process pid”
 - (negative values of pid have “interesting” behaviors)
- Keyboard ^C ⇒ kill(getpid(), SIGINT);
- Start/stop logging - kill -USR1 33
- “Lost in Space”!!
 - kill(Will_Robinson, SIGDANGER);
Death

System call - kill(pid, sig);

- “Deliver \textit{sig} to process \textit{pid}”
 - (negative values of \textit{pid} have “interesting” behaviors)
- Keyboard \textasciicircum C \Rightarrow \texttt{kill(getpid(), SIGINT)};
- Start/stop logging - \texttt{kill -USR1 33}
- “Lost in Space”!!
 - \texttt{kill(Will_Robinson, SIGDANGER)};
 - I apologize to IBM for lampooning their serious signal
Death

System call - `kill(pid, sig)`;

- "Deliver `sig` to process `pid`"
 - (negative values of `pid` have “interesting” behaviors)
- Keyboard `^C` ⇒ `kill(getpid(), SIGINT)`;
- Start/stop logging - `kill -USR1 33`
- “Lost in Space”!!
 - `kill(Will_Robinson, SIGDANGER)`;
 - I apologize to IBM for lampooning their serious signal
 - » No, I apologize for that apology..."
Process cleanup

Resource release
- Open files: close() each
 - TCP: 2 minutes (or more)
 - Solaris disk offline - forever ("None shall pass!")
- Memory: release

Accounting
- Record resource usage in a magic file

Gone?
“All You Zombies...”

Zombie process

- Process state reduced to exit code
- Waits around until parent calls wait()
 - Exit code copied to parent’s memory
 - PCB deleted from kernel
Kernel process state

The dreaded "PCB"

- (polychlorinated biphenol?)
Kernel process state

The dreaded "PCB"
- (polychlorinated biphenol?)

Process Control Block
- “Everything without a user-visible memory address”
 - Kernel management information
 - Scheduler state
 - The “stuff”
Sample PCB contents

Pointer to CPU register save area

Process number, parent process number

Countdown timer value

Memory segment info
 - User memory segment list
 - Kernel stack reference

Scheduler info
 - linked list slot, priority, “sleep channel”
15-410 Virtual Memory Layout

Kernel Data

Kernel Program

Stack
Program

Stack
Program

Stack
Program

Stack
Program

k-stack
k-stack
k-stack
k-stack

4080 MB

16 MB
15-410 Physical Memory Layout

User Memory: 240 MB
Kernel Memory: 16 MB
Ready to Implement All This?

Not so complicated...

- getpid()
- fork()
- exec()
- wait()
- exit()

What could possibly go wrong?
Summary

Parts of a Process

- Physical – Memory pages, registers, I/O devices
- Virtual – Memory regions, registers, I/O “ports”

Birth, School, Work, Death

“Big Picture” of system memory – both of them
- (Numbers & arrangement are 15-410–specific)