
1 15-410, F’23

Stack Discipline
Jan. 19, 2024

Dave EckhardtDave Eckhardt

Slides originally stolen from 15-213Slides originally stolen from 15-213

15-410
“An Experience Like No Other”

4 15-410, F’23

Synchronization
RegistrationRegistration

 15-410
 Still some advisor discussions in the air
 Seems very unlikely everybody qualified will fit

» Unfortunately, not all qualified students who are graduating
this semester seem likely to fit

 15-605
 I think enrollment is nearly over

 If you're here but not on any wait list, see me right away
 If you are an M.S. or or Ph.D. student and have not discussed

this class with your advisor, do so today
 We will not be registering graduate students without hearing from

their advisors

If you haven't taken 15-213 (A/B, malloc lab ok)If you haven't taken 15-213 (A/B, malloc lab ok)
 Contact me no later than today

7 15-410, F’23

Outline
TopicsTopics

 Process memory model
 IA32 stack organization
 Register saving conventions
 Before & after main()
 Project 0

8 15-410, F’23

Why Only 32?
You may have learned x86-64 aka EMT64 aka AMD64You may have learned x86-64 aka EMT64 aka AMD64

 x86-64 is simpler than x86(-32) for user program code
 Lots of registers, registers more orthogonal

Why will 410 be x86 / IA32?Why will 410 be x86 / IA32?

9 15-410, F’23

Why Only 32?
You may have learned x86-64 aka EMT64 aka AMD64You may have learned x86-64 aka EMT64 aka AMD64

 x86-64 is simpler than x86(-32) for user program code
 Lots of registers, registers more orthogonal

Why will 410 be x86 / IA32?Why will 410 be x86 / IA32?
 x86-64 is not simpler for kernel code

 Machine begins in 16-bit mode, then 32, finally 64
» You don't have time to write 32⇒64 transition code
» If we gave it to you, it would be a big black box

 Interrupts are more complicated
 x86-64 is not simpler during debugging

 More registers means more registers to have wrong values
 x86-64 virtual memory is a bit of a drag

 More steps than x86-32, but not more intellectually stimulating
 There are still a lot of 32-bit machines in the world

CS:APP 32-bit guideCS:APP 32-bit guide
 http://csapp.cs.cmu.edu/3e/waside/waside-ia32.pdf

10 15-410, F’23

Private Address Spaces
Each process has its own private address space.Each process has its own private address space.

kernel virtual memory
(code, data, heap, stack)

memory mapped region for
shared libraries

run-time heap
(managed by malloc)

user stack
(created at runtime)

unused0

%esp (stack pointer)

memory
invisible to
user code

brk

0xc0000000

0x08048000

0x40000000

read/write segments
(.data, .bss)

read-only segments
(.init, .text, .rodata)

loaded from the
executable file

0xffffffff

Warning:Warning:
numbers numbers
specific to specific to
Linux 2.x Linux 2.x
on IA32!!on IA32!!

Warning:Warning:
details vary details vary
by OS and by OS and
kernel kernel
version!version!

11 15-410, F’23

IA32 Stack
 Region of memory managed

with stack discipline
 “Grows” toward lower

addresses
 Register %esp indicates

lowest stack address
 address of “top” element
 stack pointer

Stack
Pointer
%esp

Stack Grows
Down

Increasing
Addresses

Stack “Top”

Stack “Bottom”

12 15-410, F’23

IA32 Stack Pushing
PushingPushing

 pushl Src
 Fetch “operand” from Src

 Maybe a register: %ebp
 Maybe memory: 8(%ebp)

 Decrement %esp by 4
 Store operand in memory at

address given by %esp

Stack Grows
Down

Increasing
Addresses

Stack “Top”

Stack “Bottom”

Stack
Pointer
%esp -4

13 15-410, F’23

IA32 Stack Popping
PoppingPopping

 popl Dest
 Read memory at address

given by %esp
 Increment %esp by 4
 Store into Dest operand

Stack
Pointer
%esp

Stack Grows
Down

Increasing
Addresses

Stack “Top”

Stack “Bottom”

+4

14 15-410, F’23

%esp

%eax

%edx

Stack Operation Examples

0x108

0x10c

0x110

555

213

123

0x108

15 15-410, F’23

%esp

%eax

%edx

Stack Operation Examples

0x108

0x10c

0x110

555

213

123

0x108

“You are having a
bad problem and
you will not go
to space today.”

16 15-410, F’23

%esp

%eax

%edx

%esp

%eax

%edx

%esp

%eax

%edx

0x104

555

0x108

0x108

0x10c

0x110

0x104

555

213

213

123

Stack Operation Examples

0x108

0x10c

0x110

555

213

123

0x108 0x104

pushl %eax

0x108

0x10c

0x110

213

123

0x104

213

popl %edx

0x108

213

15-410, F'1117

Procedure Control Flow
 Use stack to support procedure call and return

Procedure call:Procedure call:
• call label Push return address;

Jump to label

““Return address”?Return address”?
 Address of instruction after call
 Example from disassembly

 804854e:e8 3d 06 00 00 call 8048b90 <main>
 8048553:50 pushl %eax

» Return address = 0x8048553

Procedure return:Procedure return:
• ret Pop address from stack;

Jump to address

18 15-410, F’23

%esp

%eip

%esp

%eip 0x804854e

0x108

0x108

0x10c

0x110

0x104

0x804854e

0x8048553

123

Procedure Call Example

0x108

0x10c

0x110

123

0x108

call 8048b90

804854e: e8 3d 06 00 00 call 8048b90 <main>
8048553: 50 pushl %eax

0x8048b90

0x104

%eip is program counter

19 15-410, F’23

%esp

%eip

0x104

%esp

%eip 0x80485910x8048591

0x1040x104

0x108

0x10c

0x110

0x8048553

123

Procedure Return Example

0x108

0x10c

0x110

123

ret

8048591: c3 ret

0x108

%eip is program counter

0x8048553

0x8048553

20 15-410, F’23

Stack-Based Languages
Languages that support recursionLanguages that support recursion

 e.g., C, Pascal, Java
 Code must be “reentrant”

 Multiple instantiations of a single procedure “live” at same time
 Need some place to store state of each instantiation

 Arguments
 Local variables
 Return pointer (maybe)
 Weird things (static links, exception handling, …)

Stack discipline – key observationStack discipline – key observation
 State for given procedure needed for limited time

 From time of call to time of return
 Note: callee returns before caller does

Therefore stack allocated in nested Therefore stack allocated in nested framesframes
 State for single procedure instantiation

21 15-410, F’23

Call Chain Example
Code StructureCode Structure

yoo(…)
{

•
•
who();
•
•

}

who(…)
{

• • •
amI();
• • •
amI();
• • •

}

amI(…)
{

•
•
amI();
•
•

}

yoo

who

amI

amI

amI

Call Chain

 Procedure amI()
recursive

amI

22 15-410, F’23

Stack
Pointer
%esp

yoo

who

proc

Frame
Pointer
%ebp

Stack
“Top”

Stack Frames
ContentsContents

 Local variables
 Return information
 Temporary space

ManagementManagement
 Space allocated when enter

procedure
 “Set-up” code

 Deallocated when return
 “Finish” code

PointersPointers
 Stack pointer %esp indicates

stack top
 Frame pointer %ebp indicates

start of current frame

amI

23 15-410, F’23

IA32/Linux Stack Frame
Current Stack Frame (“Top” Current Stack Frame (“Top”

to “Bottom”)to “Bottom”)
 Parameters for function

we're about to call
 “Argument build”

 Local variables
 If don't all fit in registers

 Caller's saved registers
 Caller's saved frame pointer

Caller's Stack FrameCaller's Stack Frame
 Return address

 Pushed by call instruction
 Arguments for usl

Stack Pointer
(%esp)

Frame Pointer
(%ebp)

Return Addr

Saved
Registers

+
Local

Variables

Argument
Build

Old %ebp

Arguments

Caller
Frame

24 15-410, F’23

swap()

void swap(int *xp, int *yp)
{
 int t0 = *xp;
 int t1 = *yp;
 *xp = t1;
 *yp = t0;
}

25 15-410, F’23

swap()

void swap(int *xp, int *yp)
{
 int t0 = *xp;
 int t1 = *yp;
 *xp = t1;
 *yp = t0;
}

int zip1 = 15213;
int zip2 = 91125;

void call_swap()
{
 swap(&zip1, &zip2);
}

26 15-410, F’23

swap()

void swap(int *xp, int *yp)
{
 int t0 = *xp;
 int t1 = *yp;
 *xp = t1;
 *yp = t0;
}

int zip1 = 15213;
int zip2 = 91125;

void call_swap()
{
 swap(&zip1, &zip2);
}

call_swap:
• • •
pushl $zip2 # Global var
pushl $zip1 # Global var
call swap
• • •

Calling swap from call_swap

27 15-410, F’23

swap()

void swap(int *xp, int *yp)
{
 int t0 = *xp;
 int t1 = *yp;
 *xp = t1;
 *yp = t0;
}

int zip1 = 15213;
int zip2 = 91125;

void call_swap()
{
 swap(&zip1, &zip2);
}

call_swap:
• • •
pushl $zip2 # Global var
pushl $zip1 # Global var
call swap
• • •

&zip2

&zip1

Rtn adr %esp

Resulting
Stack

•
•
•

Calling swap from call_swap

28 15-410, F’23

swap()

void swap(int *xp, int *yp)
{
 int t0 = *xp;
 int t1 = *yp;
 *xp = t1;
 *yp = t0;
}

swap:
pushl %ebp
movl %esp,%ebp
pushl %ebx

movl 12(%ebp),%ecx
movl 8(%ebp),%edx
movl (%ecx),%eax
movl (%edx),%ebx
movl %eax,(%edx)
movl %ebx,(%ecx)

movl -4(%ebp),%ebx
movl %ebp,%esp
popl %ebp
ret

Body

Set
Up

Finish

Core

29 15-410, F’23

swap() Setup

swap:
pushl %ebp
movl %esp,%ebp
pushl %ebx

&zip2

&zip1

Rtn adr %esp

Entering
Stack

•
•
•

%ebp

30 15-410, F’23

swap() Setup #1

swap:
pushl %ebp
movl %esp,%ebp
pushl %ebx

Resulting
Stack

&zip2

&zip1

Rtn adr %esp

Entering
Stack

•
•
•

%ebp

yp

xp

Rtn adr

Old %ebp

%ebp
•
•
•

%esp

31 15-410, F’23

swap() Setup #2

swap:
pushl %ebp
movl %esp,%ebp
pushl %ebx

yp

xp

Rtn adr

Old %ebp %ebp

Resulting
Stack

•
•
•

&zip2

&zip1

Rtn adr %esp

Entering
Stack

•
•
•

%ebp

%esp

32 15-410, F’23

swap() Setup #3

swap:
pushl %ebp
movl %esp,%ebp
pushl %ebx

yp

xp

Rtn adr

Old %ebp %ebp

Resulting
Stack

•
•
•

&zip2

&zip1

Rtn adr %esp

Entering
Stack

•
•
•

%ebp

Old %ebx %esp

33 15-410, F’23

Effect of swap() Setup

yp

xp

Rtn adr

Old %ebp %ebp 0

 4

 8

12

Offset
(relative to %ebp)

Resulting
Stack

•
•
•

&zip2

&zip1

Rtn adr %esp

Entering
Stack

•
•
•

%ebp

Old %ebx %esp

movl 12(%ebp),%ecx # get yp
movl 8(%ebp),%edx # get xp
. . .

Body

 -4

34 15-410, F’23

swap() Finish #1

movl -4(%ebp),%ebx
movl %ebp,%esp
popl %ebp
ret

yp

xp

Rtn adr

Old %ebp %ebp 0

 4

 8

12

Offset

swap’s
Stack •

•
•

Old %ebx %esp-4

ObservationObservation
 Restoring saved register %ebx

 “Hold that thought”

yp

xp

Rtn adr

Old %ebp %ebp 0

 4

 8

12

Offset

•
•
•

Old %ebx %esp-4

35 15-410, F’23

swap() Finish #2

movl -4(%ebp),%ebx
movl %ebp,%esp
popl %ebp
ret

yp

xp

Rtn adr

Old %ebp %ebp 0

 4

 8

12

Offset

swap’s
Stack •

•
•

Old %ebx %esp-4

yp

xp

Rtn adr

Old %ebp %ebp 0

 4

 8

12

Offset

swap’s
Stack •

•
•

%esp

36 15-410, F’23

swap() Finish #3

movl -4(%ebp),%ebx
movl %ebp,%esp
popl %ebp
ret

yp

xp

Rtn adr

%ebp

 4

 8

12

Offset

swap’s
Stack •

•
•

yp

xp

Rtn adr

Old %ebp %ebp 0

 4

 8

12

Offset

swap’s
Stack •

•
•

%esp

%esp

37 15-410, F’23

swap() Finish #4

movl -4(%ebp),%ebx
movl %ebp,%esp
popl %ebp
ret

&zip2

&zip1 %esp

Exiting
Stack

•
•
•

%ebp

Observation/queryObservation/query
 Saved & restored caller's register %ebx
 Didn't do so for %eax, %ecx, or %edx!

yp

xp

Rtn adr

%ebp

 4

 8

12

Offset

swap’s
Stack •

•
•

%esp

38 15-410, F’23

Register Saving Conventions

When procedure When procedure yoo()yoo() calls calls who()who()::
 yoo() is the caller, who() is the callee

Can a register be used for temporary storage?Can a register be used for temporary storage?

 Contents of register %edx overwritten by who()

yoo:
• • •
movl $15213, %edx
call who
addl %edx, %eax
• • •
ret

who:
• • •
movl 8(%ebp), %edx
addl $91125, %edx
• • •
ret

39 15-410, F’23

Register Saving Conventions

When procedure When procedure yoo()yoo() calls calls who()who()::
 yoo() is the caller, who() is the callee

Can a register be used for temporary storage?Can a register be used for temporary storage?

DefinitionsDefinitions
 “Caller Save” register

 Caller saves temporary in its frame before calling
 “Callee Save” register

 Callee saves temporary in its frame before using

ConventionsConventions
 Which registers are caller-save, callee-save?

40 15-410, F’23

IA32/Linux Register Usage

Integer RegistersInteger Registers
 Two have special uses

 %ebp, %esp
 Three managed as

callee-save
 %ebx, %esi, %edi
 Old values saved on

stack prior to using
 Three managed as

caller-save
 %eax, %edx, %ecx
 Do what you please,

but expect any callee
to do so, as well

 Register %eax also
holds return value

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

Caller-Save
Temporaries

Callee-Save
Temporaries

Special

41 15-410, F’23

Stack makes recursion workStack makes recursion work
 Private storage for each instance of procedure call

 Instantiations don't clobber each other
 Addressing of locals + arguments can be relative to stack

positions
 Can be managed by stack discipline

 Procedures return in inverse order of calls

IA32 procedures: instructions + conventionsIA32 procedures: instructions + conventions
 call / ret instructions mix %eip, %esp in a fixed way
 Register usage conventions

 Caller / Callee save
 %ebp and %esp

 Stack frame organization conventions
 Which argument is pushed first

Stack Summary

42 15-410, F’23

Before & After main()
int main(int argc, char *argv[]) {

 if (argc > 1) {

 printf(“%s\n”, argv[1]);

 } else {

 char *av[3] = { 0, 0, 0 };

 av[0] = argv[0]; av[1] = “Fred”;

 execvp(av[0], av);

 }

 return (0);

}

43 15-410, F’23

The Mysterious Parts
argc, argvargc, argv

 Strings from one program
 Available while another program is running
 Which part of the memory map are they in?
 How did they get there?

What happens when What happens when main()main() does “ does “return(0)return(0)”???”???
 There's no more program to run...right?
 Where does the 0 go?
 How does it get there?

410 students should seek to abolish mystery410 students should seek to abolish mystery
 So we will (un)cover each mysterious thing

44 15-410, F’23

The Mysterious Parts
argc, argvargc, argv

 Strings from one program
 Available while another program is running
 Inter-process sharing/information transfer is OS's job

 OS copies strings from old address space to new in exec()
 Traditionally placed “below bottom of stack”
 Other weird things (environment, auxiliary vector) (above argv)

main()
printf()

....

arg
vector

45 15-410, F’23

The Mysterious Parts

What happens when What happens when main()main() does “ does “return(0)return(0)”?”?
 Defined by C standard to have same effect as “exit(0)”
 But how??

46 15-410, F’23

The Mysterious Parts

What happens when What happens when main()main() does “ does “return(0)return(0)”?”?
 Defined by C standard to have same effect as “exit(0)”
 But how??

The “main() wrapper”The “main() wrapper”
 Receives argc, argv from OS
 Calls main(), then calls exit()
 Provided by C library, traditionally in “crt0.s”
 Often has a “strange” name (not a legal C function name)

/* not actual code */
void ~~main(int argc, char *argv[]) {
 exit(main(argc, argv));
}

47 15-410, F’23

Project 0 - “Stack Crawler”
C/Assembly functionC/Assembly function

 Can be called by any C function
 Prints stack frames in a symbolic way

---Stack Trace Follows---

Function fun3(c='c', d=2.090000), in

Function fun2(f=35.000000), in

Function fun1(count=0), in

Function fun1(count=1), in

Function fun1(count=2), in

...

48 15-410, F’23

Project 0 - “Stack Crawler”
Conceptually easyConceptually easy

 Calling convention specifies layout of stack
 Stack is “just memory” - C happily lets you read & write

Key questionsKey questions
 How do I know 0x80334720 is “fun1”?
 How do I know fun3()'s second parameter is called “d”?

49 15-410, F’23

Project 0 “Data Flow”

tb.c

tb_globals.c

fun.c

symbol-table array
many slots (blank)

50 15-410, F’23

Project 0 “Data Flow” - Compilation

libtraceback.a

tb.o

tb_globals.o

fun.o

51 15-410, F’23

Project 0 “Data Flow” - Linking

fun

tb.o

tb_globals.o

fun.o

debugger info

52 15-410, F’23

Project 0 “Data Flow” - P0 “Post-Linking”

fun

tb.o

tb_globals.o

fun.o

debugger info
simplify

symtabgen

mutate

53 15-410, F’23

Summary
Review of stack knowledgeReview of stack knowledge

What makes What makes main()main() special special

Project 0 overviewProject 0 overview
Look for handout this afternoon/evening
Please read all of the handout before asking questions!
Meanwhile, reading the syllabus is timely!

Start interviewing Project 2/3/4 partners!Start interviewing Project 2/3/4 partners!

