15-410

“An Experience Like No Other”

Stack Discipline
Jan. 19, 2024

Dave Eckhardt

Slides originally stolen from 15-213

15-410, F’23

Synchronization

Reminder: the syllabus has been released!

= Please read it, carefully, right away
= Please do not wait until halfway through PO

. EEN
3 15-410, F’23

Synchronization

Registration

= 15-410
= Still some advisor discussions in the air
= Seems very unlikely everybody qualified will fit

» Unfortunately, not all qualified students who are graduating
this semester seem likely to fit

= 15-605
= | think enrollment is nearly over

= If you're here but not on any wait list, see me right away

= If you are an M.S. or or Ph.D. student and have not discussed
this class with your advisor, do so today

= We will not be registering graduate students without hearing from
their advisors

If you haven't taken 15-213 (A/B, malloc lab ok)

= Contact me no later than today

4 15-410, F’23

Synchronization

Office hours today?
= | believe so — see the Staff web page
= Don't forget about the syllabus!

- EEN
6 15-410, F'23

Outline

Topics
= Process memory model
= |A32 stack organization
= Register saving conventions
= Before & after main()
= Project0

7/ 15-410, F23

Why Only 327

You may have learned x86-64 aka EMT64 aka AMDG64

= Xx86-64 is simpler than x86(-32) for user program code
= Lots of registers, registers more orthogonal

Why will 410 be x86 /1A32?

8 15-410, F’23

Why Only 327

You may have learned x86-64 aka EMT64 aka AMDG64

= Xx86-64 is simpler than x86(-32) for user program code
= Lots of registers, registers more orthogonal

Why will 410 be x86 /1A32?

= X86-64 is not simpler for kernel code
= Machine begins in 16-bit mode, then 32, finally 64
» You don't have time to write 32=64 transition code
» If we gave it to you, it would be a big black box
= Interrupts are more complicated
= Xx86-64 is not simpler during debugging
= More registers means more registers to have wrong values
= Xx86-64 virtual memory is a bit of a drag
= More steps than x86-32, but not more intellectually stimulating

= There are still a lot of 32-bit machines in the world

CS:APP 32-bit guide

9" http://csapp.cs.cmu.edu/3e/waside/waside-ia32.pdf 15-410, F'23

Private Address Spaces

Each process has its own private address space.

Warning:
numbers
specific to
Linux 2.x
on lA32!!

10

Oxffffffff

0xc0000000

0x40000000

0x08048000
0

kernel virtual memory
(code, data, heap, stack)

user stack
(created at runtime)

v
A

memory mapped region for
shared libraries

?

run-time heap
(managed by malloc)

read/write segments
(.data, .bss)

read-only segments
(.init, .text, .rodata)

unused

memory
invisible to
user code

<4 %esp (stack pointer)

Warning:
details vary
by OS and
<— brk kern.e I
version!
loaded from the
executable file
15-410, F’23

11

IA32 Stack

= Region of memory managed

with stack discipline

= “Grows” toward lower
addresses

= Register $esp indicates
lowest stack address
= address of “top” element
= stack pointer

Stack “Bottom”

/

Stack
Pointer

Increasing
Addreésses

Stack Grows
Doﬁm

sesp __,

v

N

Stack “Top”

15-410, F’23

|A32 Stack Pushing

Pushing Stack “Bottom”
= pushl Src
- Fetch “operand” from Src / 4
= Maybe a register: %ebp Increfising
= Maybe memory: 8(%ebp) Addreésses
= Decrement %esp by 4

= Store operand in memory at
address given by %esp

Stack |Grows
Doﬁln
Stack
Pointer
sesp -4 v
Stack “Top”

12 15-410, F'23

|A32 Stack Popping

Popping
= popl Dest

= Read memory at address
given by %esp

= Increment %esp by 4
= Store into Dest operand

Stack
Pointer

zesp

13

Stack “Bottom”

/

Incref@sing
Addreésses
Stack |Grows
Doﬁm
—
T¥4

% 4

Stack “Top”

15-410, F'23

Stack Operation Examples

0x110
0x10c
0x108 123
$eax 213
$edx 555

%esp 0x108

14

15-410, F’23

Stack Operation Examples

0x110
0x10c
0x108 123

Feax 213
$edx 555
%esp 0x108

15

15-410, F’23

Stack Operation Examples

0x110
0x10c
0x108

$eax
$edx

sesp

16

123

213

555

0x108

0x110
0x10c
0x108
0x104

$eax

sesp

pushl %eax

123

213

213

555

0x104

0x110
0x10c
0x108
0x104

$eax
$edx

sesp

popl %edx

123

213

213

213

0x108

15-410, F’23

Procedure Control Flow

= Use stack to support procedure call and return

Procedure call:

« call label Push return address;
Jump to label

“Return address”?

= Address of instruction affer call
= Example from disassembly
= 804854e:e8 3d 06 00 00 call 8048b90 <main>
= 8048553:50 pushl %eax
» Return address = 0x8048553

Procedure return:

« ret Pop address from stack;
Jump to address

17 15-410, F'11

Procedure Call Example

804854e: e8 3d 06 00 00 call 8048b90 <main>
8048553: 50 pushl %eax

call 8048b90

0x110 0x110
0x10c 0x10c
0x108 123 0x108 123

0x104 |0x8048553

%esp 0x108 %esp 0x104

%eip |0x804854e %eip |0x8048b90

%eip Is program counter

18 15-410, F’23

Procedure Return Example

19

8048591: 3

0x110
0x10c
0x108
0x104

sesp

selp

ret

123

0x8048553

0x104

0x8048591

%eip Is program counter

0x110
0x10c
0x108

sesp

selp

ret

123

0x8048553

0x108

0x8048553

15-410, F’23

Stack-Based Languages

Languages that support recursion
= e.d., C, Pascal, Java

= Code must be “reentrant”
= Multiple instantiations of a single procedure “live” at same time

= Need some place to store state of each instantiation
Arguments

Local variables
Return pointer (maybe)
Weird things (static links, exception handling, ...)

Stack discipline — key observation

= State for given procedure needed for limited time
= From time of call to time of return

= Note: callee returns before caller does

Therefore stack allocated in nested frames
= State for single procedure instantiation

20 15-410, F’23

Call Chain Example

Code Structure
yoo (...)
{
;ho(); who (...)
. {
}) amI () ;
amI () ;
}

Call Chain

- Procedure amI ()

recursive

21

15-410, F’23

Stack Frames

Contents
= Local variables

yoo
= Return information
- Temporary space who
Management aml
= Space allocated when enter
procedure
= “Set-up” code Frame
= Deallocated when return Pointer
= “Finish” code $ebp —»
. proc
Pointers Stack
- Stack pointer %esp indicates Pointer
stack top sesp §'}'id$’
: - P
= Frame pointer $ebp indicates
start of current frame
22 15-410, F’23

|A32/Linux Stack Frame

Current Stack Frame (“Top” /
to “Bottom™)
= Parameters for function Caller
we're about to call Frame <
= “Argument build”
= Local variables L MLERL S
= If don't all fit in registers Frame Pointer _ |[Return Addr
= Caller's saved registers (%ebp) — | OId %ebp
= Caller's saved frame pointer
Saved
Caller's Stack Frame Registers
» Return address +
: : Local
= Pushed by call instruction Variables
= Arguments for usl
Stack Pointer Argﬂri?g it
(3esp) —

23 15-410, F23

swap ()

void swap (int *xp, int *yp)
{

int t0 = *xp;

int t1 = *yp;

*xp = tl;

*yp = tO0;

24 15-410, F23

swap ()

int zipl 15213;
int zip2 = 91125;

void call swap ()

{
swap (&zipl, &zip2);

}

void swap (int *xp, int *yp)
{

int t0 = *xp;

int t1 = *yp;

*xp = tl;

*yp = tO0;

25

15-410, F’23

swap ()

int zipl 15213;
int zip2 = 91125;

void call swap()

{
swap (&zipl, &zip2);

}

void swap (int *xp, int *yp)
{

int t0 = *xp;

int t1 = *yp;

*xp = tl;

*yp = tO0;

26

Calling swap from call swap

call swap:
pushl $zip2 # Global var
pushl $zipl # Global var
call swap

15-410, F’23

swap ()

int zipl 15213;
int zip2 = 91125;

void call swap()

{
swap (&zipl, &zip2);

}

void swap (int *xp, int *yp)
{

int t0 = *xp;

int t1 = *yp;

*xp = tl;

*yp = tO0;

27

Calling swap from call swap

call swap:
pushl $zip2 # Global var
pushl $zipl # Global var
call swap

. Resulting
) Stack
&zip2
&zipl
Rtn adr |[«— %esp

15-410, F’23

swap ()

void swap (int *xp, int *yp)
{

int t0 = *xp;

int t1 = *yp;

*xp = tl;

*yp = t0;

28

swap:
pushl %ebp

Core <

movl

sesp, sebp

pushl %ebx

movl
movl
movl
movl
movl
movl

movl
movl

popl
ret

12 ($ebp) , %ecx)
8 ($ebp) , sedx

%ecx) ,%eax
(%edx) , $ebx
%eax, (%edx)
%ebx, (%$ecx)

-4 (%ebp) , %ebx)

%ebp, $esp
sebp

Set
Up

> Body

/

> Finish

15-410, F’23

swap () Setup

Entering
Stack

<+— %ebp

&zip2

&zipl
Rtn adr [«— %esp

swap:
pushl %ebp
movl %esp, %ebp
pushl %ebx

29 15-410, F’23

swap () Setup #1

Entering

Stack

<+— %ebp

&zip2

&zipl

Rtn adr

<4+— 3esp

swap:

30

pushl %ebp
movl %esp, %ebp
pushl %ebx

Resulting
Stack
sebp
yp
Xp
Rtn adr

old %ebf—>|‘_ %esp

15-410, F’23

swap () Setup #2

Entering

Stack

<+— %ebp

&zip2

&zipl

Rtn adr

<4+— 3esp

swap:

31

pushl %ebp
movl %esp, $ebp
pushl %ebx

Resulting

Stack

ypP

Xp

Rtn adr

Old %ebp

<4+— S3ebp

\ sesp

15-410, F’23

swap () Setup #3

Entering Resulting
Stack StaCk
<+— %ebp
&zip2 VP
&zipl Xp
Rtn adr |[«— %esp Rtn adr
Old %ebp[+— %ebp
Old $ebx|¢— %esp

swap:
pushl %ebp
movl %esp, %ebp
pushl %ebx

32 15-410, F’23

33

Effect of swap () Setup

Entering

Stack

&zip2

&zipl

Rtn adr

—

movl 12 (%ebp) ,%ecx # get yp
movl 8 (%ebp) ,%edx # get xp

<—

sebp

sesp

Offset
(relative to $ebp)

12
8

-4

Resulting
Stack

ypP

Xp

Rtn adr

Old %ebp[+— %ebp

Old $ebx

<+— S3esp

} Body

15-410, F'23

swap () Finish #1

swap's
Stack

Offset

12

Observation

= Restoring saved register $ebx

ypP

Xp

Rtn adr

Old 2ebp

Old %ebx

T

= “Hold that thought”

34

sebp

sesp

Offset

12

-4

YP
Xp
Rtn adr
Old $ebp[¢t— %ebp
Old 3ebx|¢— %esp

-4 (%ebp) , $ebx
%ebp, sesp
sebp

movl
movl

popl
ret

15-410, F'23

swap () Finish #2

swap's
Stack

Offset

12

35

ypP

Xp

Rtn adr

Old 2ebp

<—

Old %ebx

4

sebp

sesp

swap’'s
Stack

Offset

12

YP
Xp
Rtn adr
Old $ebp[¢— %ebp
zesp

movl -4 (%ebp) , Sebx
movl %ebp, $esp
popl %ebp

ret

15-410, F’23

swap () Finish #3

swap's
Stack

Offset

12
8
4
0

36

ypP

Xp

Rtn adr

Old %ebp

sebp

sesp

swap’'s
Stack

Offset

12

l— sebp

yp

Xp

Rtn adr

\ zesp

movl -4 (%ebp) , Sebx
movl %ebp, Sesp
popl %ebp

ret

15-410, F’23

swap () Finish #4

swap’s [%ebp
Stack
Offset
12 V42
8 Xp
4 | Rtn adr
\ sesp
Observation/query

<+— %ebp

- Exiting
Stack

&zip2

&zipl [¢— S%esp

movl -4 (%ebp) , Sebx
movl %ebp, Sesp
popl %ebp

ret

= Saved & restored caller's register $ebx —

= Didn't do so for $eax, $ecx, Oor $edx!

37

15-410, F'23

Register Saving Conventions

When procedure yoo () calls who ():

yoo () is the caller, who () is the callee

Can a register be used for temporary storage?

yooO: who:
movl $15213, %edx movl 8 (%ebp), %edx
call who addl $91125, %edx
addl %edx, %eax o o o
e o o ret
ret

= Contents of register $edx overwritten by who ()

38

15-410, F'23

Register Saving Conventions

When procedure yoo () calls who ():
= yoo () is the caller, who () is the callee

Can a register be used for temporary storage?

Definitions

= “Caller Save” register
= Caller saves temporary in its frame before calling

= “Callee Save” register
= Callee saves temporary in its frame before using

Conventions
= Which registers are caller-save, callee-save?

39

15-410, F'23

|A32/Linux Register Usage

Integer Registers
= Two have special uses
= %ebp, sesp
= Three managed as
callee-save
= %ebx, $esi, $edi

= Old values saved on
stack prior to using

= Three managed as
caller-save
= %eax, sedx, $ecx

= Do what you please,
but expect any callee
to do so, as well

= Register $eax also
holds return value

40

Caller-Save
Temporaries

Callee-Save
Temporaries <

Special <

\

\/

$eax

$edx

$ecx

$ebx

$esi

$edi

zesp

%ebp

15-410, F'23

Stack Summary

Stack makes recursion work

= Private storage for each instance of procedure call
= [nstantiations don't clobber each other

= Addressing of locals + arguments can be relative to stack
positions

= Can be managed by stack discipline
= Procedures return in inverse order of calls

|IA32 procedures: instructions + conventions
= call/ret instructions mix $eip, %esp in a fixed way

= Register usage conventions
= Caller / Callee save
= %ebp and %esp

= Stack frame organization conventions
= Which argument is pushed first

41 15-410, F’23

Before & After main()

int main(int argc, char *argv|[]) {
if (argec > 1) {

}

printf (“$s\n”, argv[l]);
else {
char *av[3] = { 0, 0, O };

aV[O] = argv[O]; av[l] = “Fred”:

execvp (av[0], av);

return (0);

42

15-410, F’23

The Mysterious Parts

argc, argv
= Strings from one program
= Available while another program is running
= Which part of the memory map are they in?
= How did they get there?

What happens when main() does “return(0)”???
= There's no more program to run...right?
= Where does the 0 go?
= How does it get there?

410 students should seek to abolish mystery
= So we will (un)cover each mysterious thing

43 15-410, F’23

The Mysterious Parts

argc, argv
= Strings from one program
= Available while another program is running

= Inter-process sharing/information transfer is OS's job
= OS copies strings from old address space to new in exec()
= Traditionally placed “below bottom of stack”
= Other weird things (environment, auxiliary vector) (above argv)

arg
vector

main()
printf(),

44 15-410, F’23

The Mysterious Parts

What happens when main() does “return(0)”?

= Defined by C standard to have same effect as “exit(0)”
= But how??

45 15-410, F’23

The Mysterious Parts

What happens when main() does “return(0)”?

= Defined by C standard to have same effect as “exit(0)”
= But how??

The “main() wrapper”
= Receives argc, argv from OS
= Calls main (), then calls exit ()
= Provided by C library, traditionally in “crt0.s”
= Often has a “strange” name (not a legal C function name)

/* not actual code */
void ~~main(int argc, char *argv[]) {

exit (main(argc, argv));

46 15-410, F'23

Project O - “Stack Crawler”

C/Assembly function
= Can be called by any C function
= Prints stack frames in a symbolic way

---Stack Trace Follows---

Function fun3(c='c', d=2.090000), in
Function fun2(f=35.000000), in
Function funi(count=0), 1in

Function funi(count=1), in

Function funli(count=2), in

47 15-410, F’23

Project O - “Stack Crawler”

Conceptually easy
= Calling convention specifies layout of stack
= Stack is “just memory” - C happily lets you read & write

Key questions
= How do | know 0x80334720 is “funl1”?
= How do | know fun3 ()'s second parameter is called “d”?

48 15-410, F'23

Project 0 “Data Flow”

fun.c

symbol-table array
many slots (blank)

49

tb.cC

tb_globals.c

A

15-410, F’23

Project 0 “Data Flow” - Compilation

fun.o

50

tb.o

tb_globals.o

15-410, F’23

Project O “Data Flow” - Linking

tb_globals.o

debugger info

51 15-410, F’23

Project 0 “Data Flow” - PO “Post-Linking”

tb_globals.o

debugger info

simplify

52 15-410, F’23

Summary

Review of stack knowledge
What makes main() special

Project 0 overview
Look for handout this afternoon/evening
Please read all of the handout before asking questions!
Meanwhile, reading the syllabus is timely!

Start interviewing Project 2/3/4 partners!

53 15-410, F’23

