
Computer Science 15-410: Operating Systems
Mid-Term Exam (C), Spring 2010

1. Please read the entire exam before starting to write. This should help you
avoid getting bogged down on one problem.

2. Be sure to put your name and Andrew ID below and also put your Andrew ID at the top of
each following page.

3. This is a closed-book in-class exam. You may not use any reference materials during the
exam.

4. If you have a clarification question, please write it down on the card we have provided. Please
don’t ask us questions of the form “If I answered like this, would it be ok?” or “Are you
looking for ...?”

5. The weight of each question is indicated on the exam. Weights of question parts are estimates
which may be revised during the grading process and are for your guidance only.

6. Please be concise in your answers. You will receive partial credit for partially correct answers,
but truly extraneous remarks may count against your grade.

7. Write legibly even if you must slow down to do so! If you spend some time to
think clearly about a problem, you will probably have time to write your answer legibly.

Andrew
Username

Full
Name

Question Max Points Grader

1. 10

2. 15

3. 15

4. 15

5. 15

70

Please note that there are system-call and thread-library “cheat sheets”
at the end of the exam.

Andrew ID:

1. 10 points Short answer.

We are expecting each part of this question to be answered by three to six sentences. Your goal is
to make it clear to your grader that you understand the concept as it applies to this course and
can apply it when necessary.

(a) 5 points Explain how an “exception” and an “interrupt” are related. Provide an example
of each one and discuss how the hardware treats them differently.

Page 2

Andrew ID:

(b) 5 points What is a “segment register”? How is one used?

Page 3

Andrew ID:

2. 15 points Dining Philosophers

Consider the code below which implements a small “Dining Philosophers” system using standard
concurrency primitives.

#include <stdlib.h>
#include <thread.h>
#include <mutex.h>
#include <cond.h>
#include <rand.h>
#include <stdio.h>
#include <syscall.h>

#define DINERS 3

/* "right hand rule" mapping diner numbers to left/right chopsticks
*
* diner 0’s left chopstick is (0+2)%3==2, right chopstick is 0
* diner 1’s left chopstick is (1+2)%3==0, right chopstick is 1
* diner 2’s left chopstick is (2+2)%3==1, right chopstick is 2
*/
#define LSTICK(d) (((d)+(DINERS-1)) % DINERS)
#define RSTICK(d) (d)

mutex_t table;
int stick[DINERS]; /* stick -> -1 or owner */
cond_t avail[DINERS]; /* that stick is newly free */

mutex_t prng_lock;
unsigned long genrand_r(void);

void *diner(void *vsd);

int main()
{

int i;

sgenrand(get_ticks());
thr_init(16*1024);
mutex_init(&table);
mutex_init(&prng_lock);
/* "set the table": */
for (i = 0; i < DINERS; ++i) {

stick[i] = -1;
cond_init(&avail[i]);

}
/* "Gentlemen, Be Seated!" (Robert A. Heinlein) */
for (i = 0; i < DINERS; ++i) {

thr_create(diner, (void *)i);
}
thr_exit(0);
return(99); /* on the exam, we definitely won’t get here */

}

Page 4

Andrew ID:

void start_eating(int d)
{

mutex_lock(&table);

while (stick[RSTICK(d)] != -1) {
cond_wait(&avail[RSTICK(d)], &table);

}
stick[RSTICK(d)] = d;

while (stick[LSTICK(d)] != -1) {
cond_wait(&avail[LSTICK(d)], &table);

}
stick[LSTICK(d)] = d;

mutex_unlock(&table);
}

void done_eating(int d)
{

mutex_lock(&table);
stick[LSTICK(d)] = stick[RSTICK(d)] = -1;
cond_signal(&avail[RSTICK(d)]);
cond_signal(&avail[LSTICK(d)]);
mutex_unlock(&table);

}

void *diner(void *vsd)
{

int d = (int) vsd;

while (1) {
sleep(genrand_r() % 100);
start_eating(d);
sleep(genrand_r() % 10);
done_eating(d);

}
}

unsigned long genrand_r(void)
{

unsigned long ul;
mutex_lock(&prng_lock);
ul = genrand();
mutex_unlock(&prng_lock);
return (ul);

}

Page 5

Andrew ID:

This system can deadlock. Show an execution trace which demonstrates one way a deadlock can
arise. Use the format presented in class; abbreviations which are genuinely obvious are acceptable,
e.g.,

D0 D1
cwait(1)

lock(t)
s[0]=0

Grades will be assigned based on your ability to convince the grader that your execution trace is
possible and results in a deadlock. Thus it is greatly to your advantage for your answer to be easy
to read, compelling, and concise. You should almost certainly write your solution down on the back
of the previous page (or somewhere else) and check it there before copying it to the space below.

Page 6

Andrew ID:

You may use this page as extra space for your dining-philosophers solution if you wish.

Page 7

Andrew ID:

3. 15 points SIGSEGV

Consider the following code which might be observed early (hopefully very very early!) in the
development of a Project 0.

#include <stdlib.h>
#include <stdio.h>
#include <signal.h>

/* This code is compiled with -O0, i.e., with the optimizer turned off.
* Also, we assume sizeof (void*) >= sizeof (long), which is ok for IA32
* but not portable to other platforms.
*/

static volatile int broken = 0; /* communicate from handler to checker */

/* This function sets the global "broken" flag to 1 on a seg fault.
* The function causing the fault can then check the "broken" flag.
*/
void segv(int ignored) {

broken = 1;
}

/* Check for validity of address. */
int tryit(void *addr) {

volatile int buffer;
broken = 0;
buffer = *(int *)addr;
return (!broken);

}

int main(int argc, char *argv[]) {
void *addr;
struct sigaction sa;

sa.sa_handler = segv;
sigfillset(&sa.sa_mask); /* don’t want other signals while in segv() */
sa.sa_flags = 0;
sigaction(SIGSEGV, &sa, NULL);

if (argc > 1) {
addr = (void *) strtoul(argv[1], NULL, 16); /* convert from hex string */

if (tryit(addr)) {
printf("Ok: %p\n", addr); return 0;

} else {
printf("Not ok: %p\n", addr); return 1;

}
} else {

printf("%s: no address specified\n", argv[0]); return 2;
}

}

Page 8

Andrew ID:

The author of the code appears to expect that when the program is run the address specified on
the command line will be quickly diagnosed as either valid or invalid. But that’s not what happens.
For some addresses, the program appears to hang.

[de0u@keykos code]$ gcc -O0 -m32 -Wall -o tryit tryit.c
[de0u@keykos code]$./tryit 0x8048433
Ok: 0x8048433
[de0u@keykos code]$./tryit 0
...time passes...
...user gets angry and presses control-C...
^C
[de0u@keykos code]$

Below you may find the assembly code for the relevant C functions.

.globl segv
segv:

pushl %ebp
movl %esp, %ebp
movl $1, broken
popl %ebp
ret

.globl tryit
tryit:

pushl %ebp
movl %esp, %ebp
subl $16, %esp
movl $0, broken
movl 8(%ebp), %eax
movl (%eax), %eax
movl %eax, -4(%ebp)
movl broken, %eax
testl %eax, %eax
sete %al
movzbl %al, %eax
leave
ret

Page 9

Andrew ID:

(a) 10 points In the case where the program doesn’t promptly print out a diagnosis for a
given address, what is happening, and when? Is it really hung, or should the user wait
longer? If so, how long?
Your answer should demonstrate that you understand and can apply the concepts and
abstractions relevant to this class; answers which are “correct” but too abstract will receive
only partial credit. We are expecting some answers to be roughly two paragraphs long;
other answers may show a well-commented execution trace.

Page 10

Andrew ID:

You may use this page as extra space for your SIGSEGV solution if you wish.

Page 11

Andrew ID:

(b) 5 points Explain how to improve the performance of the program in the situation(s) you
described in the previous part. Your proposal may include code but that is not mandatory;
in either case please clearly demonstrate that you understand how your proposal changes
the sequence of events you described above.

Page 12

Andrew ID:

4. 15 points “Pair locks”

When you implemented your thread library for Project 2, you implemented several objects which
provide locking: mutexes, semaphores, and reader/writer locks. Many other kinds of lock exist,
and we will probably discuss some of them later in the semester.

In this question we will discuss a special kind of lock proposed for a special situation. Imagine a
system in which many resources come in pairs (perhaps the system has a pair of tape drives and a
pair of CD burners), and imagine further that processes, depending on their immediate needs, use
either the first element of a pair, the second element, or both.

In an attempt to avoid “something bad” happening if processes used regular locks when trying to
acquire some or both devices in a pair, a special lock called a “pair lock” has been devised.

When a pair lock is initialized, both resources managed by the pair lock pair are available. When
pl lock() is called, the caller specifies whether to lock the first resource, the second resource, or
both—pl lock() returns when all requested elements have been acquired. pl unlock() releases
the specified elements of a resource pair, which must currently be held by the caller. When a thread
calls pl lock() on a pair lock, it must use pl unlock() to release all elements it holds before it
any later acquisition of elements from the pair using pl lock().

For the purposes of the exam you should assume an error-free environment (invocations of pl lock()
and pl unlock() are always legal; memory allocation will always succeed; thread-library primitives
will not detect internal inconsistencies or otherwise “fail,” etc.). If you wish, you may assume that
the mutexes provided by the underlying thread library provide bounded waiting; you may also
assume, if you wish, that the underlying condition variables are “as FIFO as possible.” You may
wish to refer to the “cheat sheets” at the end of the exam.

#include <stdlib.h>
#include <thread.h>
#include <mutex.h>
#include <cond.h>
#include <stdio.h>
#include <syscall.h>

typedef struct pl {
mutex_t m;
cond_t released;
int avail[2];

} pl_t;

/* Initialize a pair-lock */
void pl_init(pl_t *pl)
{

mutex_init(&pl->m);
cond_init(&pl->released);
pl->avail[0] = pl->avail[1] = 1;

}

Page 13

Andrew ID:

/* Lock one or both resources controlled by the pair-lock. */
void pl_lock(pl_t *pl, int want[2])
{

mutex_lock(&pl->m);

while ((want[0] && !pl->avail[0]) || (want[1] && !pl->avail[1])) {
cond_wait(&pl->released, &pl->m);

}

/* good to go! */
if (want[0]) {

pl->avail[0] = 0;
}
if (want[1]) {

pl->avail[1] = 0;
}
mutex_unlock(&pl->m);
return;

}

/* Unlock resources controlled by a pair-lock.
* The results are undefined if the resources we are
* directed to unlock are not currently locked by us.
*/
void pl_unlock(pl_t *pl, int unlock[2])
{

mutex_lock(&pl->m);
if (unlock[0]) {

pl->avail[0] = 1;
}
if (unlock[1]) {

pl->avail[1] = 1;
}
cond_signal(&pl->released);
mutex_unlock(&pl->m);

}

Page 14

Andrew ID:

Unfortunately, this implementation of pair locks does not ensure progress: an unbounded time may
pass during which one or more threads are requesting one or more available resources from a pair
lock but no requests are granted.

(a) 8 points Provide an execution trace using the format presented in class (as described in
the previous problem) which clearly demonstrates this kind of progress failure. Grades
will be assigned based on your ability to convince the grader that your execution trace is
possible and demonstrative. Thus it is greatly to your advantage for your answer to be easy
to read, compelling, and concise. You should almost certainly write your solution down
on the back of the previous page (or somewhere else) and check it there before copying it
to the space below.

Page 15

Andrew ID:

You may use this page as extra space for your pair-lock solution if you wish.

Page 16

Andrew ID:

(b) 7 points Explain how to solve the problem you identified. If you completely understand
the problem, your answer to this part can be very short: a sentence explaining a particular
code change and a short paragraph explaining why it works. Alternatively, you may
present a struct pl t and code for pl init(), pl lock() and pl unlock(); if you take
that approach, be sure to briefly summarize how your solution works.

Page 17

Andrew ID:

You may use this page as extra space for your pair-lock solution if you wish.

Page 18

Andrew ID:

5. 15 points print ints().

Imagine that in your “spare time” (whatever that might be), you begin working on a small embedded
operating system for a very small, power-constrained device which has the ability to shut down
individual parts of its RAM to save power (the contents are lost). Naturally, you find you need some
way to emit debugging output. However, you are shocked to learn that a standard implementation
of printf() compiles to more than four kilobytes of code space; your power budget doesn’t allow
you to waste that much RAM just for pretty debugging messages. You decide to investigate a
simpler, hopefully smaller debugging facility and come up with the following.

print ints(int count, ...) - print a list of integer parameters; the number of integers to print
is specified as the first parameter to the function, and the other integers are passed as the remaining
parameters. The printed integers are separated by spaces and after all the integers are printed a
newline character is printed as well.

Here are some sample invocations.

• print ints(1,42) - will print just 42 followed by a newline.

• print ints(3,1,2,3) - will print the smallest three positive integers followed by a newline.

• print ints(3,1,2,3,42) - will also print the smallest three positive integers followed by a
newline (note the invocation error).

• print ints(1048576,1) - the results are undefined (not enough ints!).

You decide to prototype this first on a system you are familiar with, namely IA-32 (32-bit Intel
x86), using gcc as your compiler, gas as your assembler, and GNU ld as your linker.

Now please write the code for print ints(). You may make use of two simple underlying functions:
print int(int i) prints a single integer and print char(char c) prints a single character. You
should not need to make calls to any functions or macros other than those, plus ones you write.
Most of your code should be in C, though you may use a small amount of assembly code if you wish.
Please make sure your code is easy to read, clearly accomplishes its goals, and is at least lightly
commented when necessary (don’t worry—you don’t need to provide any Doxygen comments; a
few informal but helpful comments should suffice).

Page 19

Andrew ID:

You may use this page as extra space for your print ints() solution if you wish.

Page 20

Andrew ID:

System-Call Cheat-Sheet

/* Life cycle */
int fork(void);
int exec(char *execname, char *argvec[]);
void set_status(int status);
void vanish(void) NORETURN;
int wait(int *status_ptr);
void task_vanish(int status) NORETURN;

/* Thread management */
int thread_fork(void); /* Prototype for exam reference, not for C calling!!! */
int gettid(void);
int yield(int pid);
int cas2i_runflag(int tid, int *oldp, int ev1, int nv1, int ev2, int nv2);
int get_ticks();
int sleep(int ticks); /* 100 ticks/sec */

/* Memory management */
int new_pages(void * addr, int len);
int remove_pages(void * addr);

/* Console I/O */
char getchar(void);
int readline(int size, char *buf);
int print(int size, char *buf);
int set_term_color(int color);
int set_cursor_pos(int row, int col);
int get_cursor_pos(int *row, int *col);

/* Miscellaneous */
void halt();
int ls(int size, char *buf);

/* "Special" */
void misbehave(int mode);

If a particular exam question forbids the use of a system call or class of system calls, the presence
of a particular call on this list does not mean it is “always ok to use.”

Page 21

Andrew ID:

Thread-Library Cheat-Sheet

int mutex_init(mutex_t *mp);
int mutex_destroy(mutex_t *mp);
int mutex_lock(mutex_t *mp);
int mutex_unlock(mutex_t *mp);

int cond_init(cond_t *cv);
int cond_destroy(cond_t *cv);
int cond_wait(cond_t *cv, mutex_t *mp);
int cond_signal(cond_t *cv);
int cond_broadcast(cond_t *cv);

int thr_init(unsigned int size);
int thr_create(void *(*func)(void *), void *arg);
int thr_join(int tid, void **statusp);
void thr_exit(void *status);
int thr_getid(void);
int thr_yield(int tid);

int sem_init(sem_t *sem, int count);
int sem_wait(sem_t *sem);
int sem_signal(sem_t *sem);
int sem_destroy(sem_t *sem);

int rwlock_init(rwlock_t *rwlock);
int rwlock_lock(rwlock_t *rwlock, int type);
int rwlock_unlock(rwlock_t *rwlock);
int rwlock_destroy(rwlock_t *rwlock);

If a particular exam question forbids the use of a library routine or class of library routines, the
presence of a particular routine on this list does not mean it is “always ok to use.”

Page 22

Andrew ID:

Useful-Equation Cheat-Sheet

cos2 θ + sin2 θ = 1

sin(α± β) = sinα cosβ ± cosα sinβ

cos(α± β) = cosα cosβ ∓ sinα sinβ

sin 2θ = 2 sin θ cos θ

cos 2θ = cos2 θ − sin2 θ

eix = cos(x) + i sin(x)

cos(x) =
eix + e−ix

2

sin(x) =
eix − e−ix

2i

∫
lnx dx = x lnx− x+ C∫ ∞
0

√
x e−x dx =

1
2
√
π∫ ∞

0
e−ax2

dx =
1
2

√
π

a∫ ∞
0

x2e−ax2
dx =

1
4

√
π

a3
when a > 0

Γ(z) =
∫ ∞

0
tz−1e−t dt

ih̄
∂

∂t
Ψ(r, t) = ĤΨ(r, t)

ih̄
∂

∂t
Ψ(r, t) = − h̄2

2m
∇2Ψ(r, t) + V (r)Ψ(r, t)

E = hf =
h

2π
(2πf) = h̄ω

p =
h

λ
=

h

2π
2π
λ

= h̄k

∇ ·E =
ρ

ε0
∇ ·B = 0

∇×E = −∂B
∂t

∇×B = µ0J + µ0ε0
∂E
∂t

Page 23

