
Computer Science 15-410: Operating Systems
Mid-Term Exam (B), Spring 2009

1. Please read the entire exam before starting to write. This should help you
avoid getting bogged down on one problem.

2. Be sure to put your name and Andrew ID below and also put your Andrew ID at the top of
each following page.

3. This is a closed-book in-class exam. You may not use any reference materials during the
exam.

4. If you have a clarification question, please write it down on the card we have provided. Please
don’t ask us questions of the form “If I answered like this, would it be ok?” or “Are you
looking for ...?”

5. The weight of each question is indicated on the exam. Weights of question parts are estimates
which may be revised during the grading process and are for your guidance only.

6. Please be concise in your answers. You will receive partial credit for partially correct answers,
but truly extraneous remarks may count against your grade.

7. Write legibly even if you must slow down to do so! If you spend some time to
think clearly about a problem, you will probably have time to write your answer legibly.

Andrew
Username

Full
Name

Question Max Points Grader

1. 10

2. 15

3. 20

4. 20

5. 10

75

Please note that there are system-call and thread-library “cheat sheets”
at the end of the exam.

Andrew ID:

I have not received advance information on the content of this 15-410 mid-term exam by dis-
cussing it with anybody who took part in the main exam session or via any other avenue.

Signature: Date

Please note that there are system-call and thread-
library “cheat sheets” at the end of the exam.

If we cannot read your writing, we will be un-
able to assign a high score to your work.

Page 2

Andrew ID:

1. 10 points Short answer.

Give a three-to-five sentence definition of each of the following terms as it applies to this course.
Your goal is to make it clear to your grader that you understand the concept and can apply it when
necessary.

(a) 5 points Blocked

(b) 5 points Asynchronous thread cancellation

Page 3

Andrew ID:

2. 15 points Interrupts

Consider interrupt handlers in the Project 1 run-time environment. Shown below is the wrapper
code for two handlers (they might be for the keyboard and timer, or they might be for other
handlers, such as a mouse or disk drive). Assume the relevant IDT entries are configured as trap
gates.

.text

.globl i1handler, i2handler

.globl g1wrapper
g1wrapper:
pusha
call i1handler
popa
iret

.globl g2wrapper
g2wrapper:
pusha
call i2handler
popa
iret

When you and your Project 3 partner compare notes on how you implemented interrupt handler
wrappers in Project 1, controversy breaks out. Your partner wants to know what happens if the
processor is in the middle of executing the pusha instruction in g1wrapper when the interrupt
handled by g2wrapper is asserted. In detail, the concern is that g1wrapper’s pusha may have
pushed some, but not all, of the registers it’s supposed to when suddenly control could transfer to
g2wrapper’s pusha.

(a) 6 points Given the description above, explain either why this condition cannot occur, or
why it can occur but is not a threat.

Page 4

Andrew ID:

Meanwhile, your partner expresses a second concern. Since pusha pushes quite a few registers on
the stack, your partner is worried that the pushing could cross a page boundary and cause a page
fault. Your partner proposes the following fix, to be applied to all interrupt handler wrappers (only
two are shown).

.text

.globl i1handler, i2handler

.globl g1wrapper
g1wrapper:
cli # disable interrupts
pusha
call i1handler
popa
sti # enable interrupts
iret

.globl g2wrapper
g2wrapper:
cli # disable interrupts
pusha
call i2handler
popa
sti # enable interrupts
iret

(b) 8 points Is this change necessary and sufficient to solve the problem as described? If yes,
explain how. If no, explain why this change does not help and also explain any necessary
steps which must be taken.

Page 5

Andrew ID:

3. 20 points Semaphore problem

Having heard that one of the 410 course staff very much enjoys semaphores, your partner has
implemented a “small extension” to the standard semaphore design which increases the similarity
between semaphores and condition variables. In particular, your partner’s code tracks how many
threads are waiting on a semaphore and provides a primitive, sem broadcast(), which wakes up
all threads waiting on a semaphore.

typedef struct {
int count;
int waiters;
mutex_t count_lock;
mutex_t waiters_lock;
cond_t cv;

} sem_t;

int sem_init(sem_t *sem, int count); /* code omitted for exam purposes */
int sem_destroy(sem_t *sem); /* code omitted for exam purposes */

int sem_wait(sem_t *sem) {
mutex_lock(&sem->count_lock);
if (sem->count > 0) {

sem->count--;
mutex_unlock(&sem->count_lock);
return 0;

} else {
mutex_lock(&sem->waiters_lock);
sem->waiters++;
mutex_unlock(&sem->waiters_lock);

}
cond_wait(&sem->cv, &sem->count_lock);
sem->count--;
mutex_unlock(&sem->count_lock);
mutex_lock(&sem->waiters_lock);
sem->waiters--;
mutex_unlock(&sem->waiters_lock);
return 0; int sem_broadcast(sem_t *sem) {

} int i, w;
// lock: we want only *existing* waiters

int sem_signal(sem_t *sem) { mutex_lock(&sem->waiters_lock);
mutex_lock(&sem->count_lock); w = sem->waiters;
sem->count++; for (i = 0; i < w; i++)
cond_signal(&sem->cv); sem_signal(sem);
mutex_unlock(&sem->count_lock); mutex_unlock(&sem->waiters_lock);
return 0; return 0;

} }

Page 6

Andrew ID:

There are (at least) two synchronization problems found in the code presented above. To receive
full credit, identify two different problems (rather than two instances of the same mistake). Do not
present more than two. The problems are found in the code presented to you (in other words, we
are not looking for claims that sem init() might be implemented incorrectly). You should assume
that invocations of thread-library primitives (e.g., mutex lock()) succeed rather than detecting
inconsistency or otherwise failing. You may wish to refer to the “cheat sheets” at the end of the
exam.

If you have correctly identified a sychronization problem, you will be able to briefly and clearly
summarize it and show a clear and compelling execution trace using the tabular execution format
from the lectures and homework assignment. Confusing descriptions and unclear execution traces
will be read as evidence of incomplete understanding and will be graded as such. This means that
it is to your advantage to think your answers through before beginning to write.

(a) 12 points Briefly and clearly describe the first synchronization problem you have iden-
tified with the code above. Show a clear and compelling execution trace.

Page 7

Andrew ID:

(b) 8 points Briefly and clearly describe a second synchronization problem with the code
above, which should be “a different kind of problem.” Show a clear and compelling exe-
cution trace.

Page 8

Andrew ID:

4. 20 points Rendezvous

Concurrent programs use a variety of synchronization objects beyond the standard mutex and
condition variable. For Project 2 you implemented semaphores and readers-writers locks, but
applications use other synchronization objects as well.

One such object is the “rendezvous,” which combines synchronization with data communica-
tion. Two threads wishing to synchronize “arrive” at the same rendezvous, each with a data
item they wish to convey to the other thread. The first thread to arrive suspends its execution
until the second arrives; when the second arrives, the two values are exchanged; the “arrive”
operation then returns to each thread indicating the value which was provided by the other
thread.

Here is some toy code demonstrating the usage of a rendezvous.

rendezvous_t r;

void *worker(void *data)
{

int initial, other;

initial = (int)data; // get our value from main()

other = rend_arrive(&r, initial); // now, swap values with someone else
assert(initial == !other); // assumes main() used 0 and 1!

other = rend_arrive(&r, other); // now, just swap them back
assert(initial == other);

return NULL;
}

int main(void)
{

int thr1, thr2;

thr_init(PAGE_SIZE);
rend_init(&r);

thr1 = thr_create(worker, (void *) 0);
thr2 = thr_create(worker, (void *) 1);

thr_join(thr1, NULL); thr_join(thr2, NULL);

thr_exit(NULL);

return 0;
}

Page 9

Andrew ID:

The Plan 9 operating system exports rendezvous as a kernel primitive serving essentially the same
purpose as cas2i runflag() does in Pebbles. You will implement a userland variant of this mech-
anism on top of the other synchronization objects provided by the thread library.

You will provide us with both a structure definition for your rendezvous and the code for two
functions

• typedef struct rendezvous { ... } rendezvous t;

• void rend init(rendezvous t *rp);

• int rend arrive(rendezvous t *rp, int value);

We will not worry about rend destroy(). Your solution can use Project 2 thread library primi-
tives. You must comply with the published interfaces of synchronization primitives, i.e., you cannot
inspect or modify the internals of any thread-library data objects. You may not use assembly code,
inline or otherwise. For the purposes of the exam you should assume an error-free environment
(memory allocation will always succeed; thread-library primitives will not detect internal inconsis-
tencies or otherwise “fail,” etc.). You may wish to refer to the “cheat sheets” at the end of the
exam.

The remainder of this page is intentionally blank.

Page 10

Andrew ID:

(a) 0 points The best way to get a correct solution is to analyze the problem and form an
invariant or other conceptual description which will let you check your solution. A good
way to get in trouble is to write down code for one case, and then discover another case...
We suggest that you present a brief argument that your solution addresses all relevant
hazards.
Answering this part of the question is optional but highly recommended. If your grader
cannot understand why your code is correct, you will not receive full credit.

Page 11

Andrew ID:

(b) 5 points Please declare your struct rendezvous here. Also write a function
void rend init(rendezvous t *rp) to initialize a rendezvous.
typedef struct rendezvous {

} rendezvous_t;

void rend_init(rendezvous_t *rp)
{

}

Page 12

Andrew ID:

(c) 15 points Now please write rend arrive(rendezvous t *rp, int value).

Page 13

Andrew ID:

You may use this page as extra space for your rendezvous solution if you wish.

Page 14

Andrew ID:

5. 10 points Process model.

Consider the following odd program.

const char rodata[] = "Can’t touch this!";

int main(int argc, char *argv[])
{
return (rodata[0]);

}

The “rodata” entity is “self-descriptive”: it is named “rodata” and it exists in the rodata region
(or rodata segment, or rodata section) of the program.

(a) 5 points Please write a short C program which defines another “self-descriptive” entity.
Also state one property of this region which differentiates it from other regions.

(b) 5 points Please write a short C program which defines yet another “self-descriptive”
entity. Also state one property of this region which differentiates it from other regions.

Page 15

Andrew ID:

System-Call Cheat-Sheet

/* Life cycle */
int fork(void);
int exec(char *execname, char *argvec[]);
void set_status(int status);
void vanish(void) NORETURN;
int wait(int *status_ptr);
void task_vanish(int status) NORETURN;

/* Thread management */
int thread_fork(void); /* Prototype for exam reference, not for C calling!!! */
int gettid(void);
int yield(int pid);
int cas2i_runflag(int tid, int *oldp, int ev1, int nv1, int ev2, int nv2);
int get_ticks();
int sleep(int ticks); /* 100 ticks/sec */

/* Memory management */
int new_pages(void * addr, int len);
int remove_pages(void * addr);

/* Console I/O */
char getchar(void);
int readline(int size, char *buf);
int print(int size, char *buf);
int set_term_color(int color);
int set_cursor_pos(int row, int col);
int get_cursor_pos(int *row, int *col);

/* Miscellaneous */
void halt();
int ls(int size, char *buf);

/* "Special" */
void misbehave(int mode);

Page 16

Andrew ID:

Thread-Library Cheat-Sheet

int mutex_init(mutex_t *mp);
int mutex_destroy(mutex_t *mp);
int mutex_lock(mutex_t *mp);
int mutex_unlock(mutex_t *mp);

int cond_init(cond_t *cv);
int cond_destroy(cond_t *cv);
int cond_wait(cond_t *cv, mutex_t *mp);
int cond_signal(cond_t *cv);
int cond_broadcast(cond_t *cv);

int thr_init(unsigned int size);
int thr_create(void *(*func)(void *), void *arg);
int thr_join(int tid, void **statusp);
void thr_exit(void *status);
int thr_getid(void);
int thr_yield(int tid);

int sem_init(sem_t *sem, int count);
int sem_wait(sem_t *sem);
int sem_signal(sem_t *sem);
int sem_destroy(sem_t *sem);

int rwlock_init(rwlock_t *rwlock);
int rwlock_lock(rwlock_t *rwlock, int type);
int rwlock_unlock(rwlock_t *rwlock);
int rwlock_destroy(rwlock_t *rwlock);

Page 17

Andrew ID:

If you wish, you may tear this page off and use it for scrap paper. But be sure not to write
anything on this page which you want us to grade.

Page 18

