
Computer Science 15-410: Operating Systems
Mid-Term Exam (A), Fall 2010

1. Please read the entire exam before starting to write. This should help you
avoid getting bogged down on one problem.

2. Be sure to put your name and Andrew ID below and also put your Andrew ID at the top of
each following page.

3. This is a closed-book in-class exam. You may not use any reference materials during the
exam.

4. If you have a clarification question, please write it down on the card we have provided. Please
don’t ask us questions of the form “If I answered like this, would it be ok?” or “Are you
looking for ...?”

5. The weight of each question is indicated on the exam. Weights of question parts are estimates
which may be revised during the grading process and are for your guidance only.

6. Please be concise in your answers. You will receive partial credit for partially correct answers,
but truly extraneous remarks may count against your grade.

7. Write legibly even if you must slow down to do so! If you spend some time to
think clearly about a problem, you will probably have time to write your answer legibly.

Andrew
Username

Full
Name

Question Max Points Grader

1. 10

2. 10

3. 15

4. 15

5. 15

6. 10

75

Please note that there are system-call and thread-library “cheat sheets”
at the end of the exam.

Andrew ID:

After I leave this exam session, I will not discuss the contents of this 15-410 midterm with
anybody, whether or not in this class, whether or not present in this exam session with me, before
19:00 on Wednesday, October 6th.

Signature: Date

Please note that there are system-call and thread-
library “cheat sheets” at the end of the exam.

If we cannot read your writing, we will be un-
able to assign a high score to your work.

Page 2

Andrew ID:

1. 10 points Short answer.

We are expecting each part of this question to be answered by three to six sentences. Your goal is
to make it clear to your grader that you understand the concept as it applies to this course and
can apply it when necessary.

(a) 6 points List three “kinds” of register. For each kind, name one register of that “kind”
and briefly explain what is special about it or its particular purpose.

Page 3

Andrew ID:

(b) 4 points What is a “kernel stack”? When is one used and why are they important?

Page 4

Andrew ID:

2. 10 points Draw a diagram showing the transitions among the following scheduling states:

Running, Runnable, Sleeping, Blocked, Zombie (Zombie may also be known as Exit-

ing). Label the arcs with events which make sense in terms of the 15-410 “Pebbles” run-time
environment. If more than one event can cause a particular transition, list two, and try to
make the two of them as different from each other as you can. If it seems appropriate to you,
you are authorized to draw some “arcs” which have one endpoint instead of two.

Running Runnable

Sleeping Blocked

Zombie

Page 5

Andrew ID:

3. 15 points Condition variables.

The “condition variable” is an important concurrency primitive that encapsulates the notion of
“stop running, so that other threads may use the processor, until the world changes in a way which
probably enables me to continue working.” A necessary part of implementing condition variabls
is solving the “atomic unlock-and-deschedule” problem: a waiting thread must release a lock and
ask the kernel to block it; if another thread is trying to awaken the waiting thread, the “awaken”
operation must not be lost just because its execution is interleaved in a troublesome way with the
“release, then block” sequence.

The Fall 2010 Pebbles kernel specification provides user code with two system calls which can
be combined to solve the atomic-blocking problem, deschedule() and make runnable(). Other
systems provide other primitives, some of which are quite different. Linux provides “futexes” and
signals; Plan 9 provides a primitive called “rendezvous.”

void *rendezvous(void *tag, void *value) - Synchronize, and exchange values between,
two threads in the same task. Two threads wishing to synchronize invoke rendezvous specifying
the same tag parameter and arbitrary value parameters. The first thread to arrive at the
rendezvous will suspend execution until the second thread arrives. When another thread invokes
rendezvous()with the same tag parameter, each one receives the value parameter specified by
the other one. After the exchange, both threads are runnable. The return value of the system
call is the value parameter specified by the other thread. The kernel places no interpretation
on the values of the tag and value parameters except when it performs equality testing on the
tag parameters.

In this problem you will implement condition variables using mutexes and rendezvous(). You may
not use other atomic or thread-synchronization synchronization operations, such as, but not limited
to: semaphores, reader/writer locks, deschedule()/make runnable(), or any atomic instructions
(XCHG, LL/SC).

For the purposes of the exam, you may assume that library routines and system calls don’t “fail”
(unless you indicate in your comments that you have arranged, and are expecting, a particular
failure).

(Continued on next page)

Page 6

Andrew ID:

Please declare a struct cond and implement cond init(), cond wait(), and cond signal()

(you do not need to implement either cond broadcast() or cond destroy()). If you wish,
you may also declare an auxiliary structure, struct aux, but this is strictly optional.

It is strongly recommended that you rough out an implementation on the scrap paper provided

at the end of the exam, or on the back of some other page, before you write anything here. If

we cannot understand the solution you provide on this page, your grade will suffer!

typedef struct cond {

} cond_t;

typedef struct aux {

} aux_t;

Page 7

Andrew ID:

...space for cvar implementation...

Page 8

Andrew ID:

You may use this page as extra space for your cvar solution if you wish.

Page 9

Andrew ID:

4. 15 points List locking.

Your friend Barry Hovik is writing some concurrent code using a shared linked list, and comes to
you wondering about concurrency primitives. His code currently looks like this:

void list_insert_sorted(list_t *list, list_node_t *new)

{

list_node_t **p;

/* STEP 0: Prevent concurrent access. */

rwlock_lock(&list->lock, RWLOCK_WRITE);

/* STEP 1: Iterate down the list. */

for (p = &list->head; *p != NULL; p = &(*p)->next) {

if (list->compare((*p)->data, new->data) >= 0) {

/* Entry should be inserted after the current one. */

break;

}

}

/* STEP 2: Insert node. */

new->next = *p;

*p = new;

rwlock_unlock(&list->lock);

}

You should imagine that other list operations, such as list delete(), list count nodes(), etc.,
exist and are coded in sensible (correct) fashions. Naturally, operations that examine the list but
do not modify it lock the list in RWLOCK READ mode.

Page 10

Andrew ID:

Barry is worried that list insert sorted() will perform poorly because walking down the list
takes O(n) time and his code will hold a RWLOCK WRITE (exclusive) lock during the entire operation.
He explains that he briefly considered rewriting list insert sorted() as follows.

void list_insert_sorted(list_t *list, list_node_t *new)

{

list_node_t **p;

/* STEP 0: "Declare" that list shouldn’t change while we walk it. */

rwlock_lock(&list->lock, RWLOCK_READ);

/* STEP 1: Iterate down the list. */

for (p = &list->head; *p != NULL; p = &(*p)->next) {

int cmp;

if ((cmp = list->compare((*p)->data, new->data)) == 0) {

/* We already have one of these */

rwlock_unlock(&list->lock);

free(new);

return;

} else if (cmp > 0) {

/* Entry should be inserted after the current one. */

break;

}

}

/* STEP 2: Promote READ lock to WRITE lock before modification. */

rwlock_unlock(&list->lock);

rwlock_lock(&list->lock, RWLOCK_WRITE);

/* STEP 3: Insert node. */

new->next = *p;

*p = new;

rwlock_unlock(&list->lock);

}

Page 11

Andrew ID:

(a) 5 points Of course, you and Barry both know this proposed revision of list insert sorted()

is totally unusable. Briefly but compellingly explain why. Your answer may consist of a
few sentences or a short paragraph, and may include a brief execution trace, though one
is not required. For full credit, explain not just what is “theoretically wrong” with this
approach but also a particular bad outcome which could be observed.

Page 12

Andrew ID:

Now that you and Barry are thinking along the same lines, he unveils a novel proposal. He has
invented a new operation for readers/writers locks to support, called rwlock promote(), defined
as follows.

void rwlock promote(rwlock t *rwlock) - If the invoking thread does not already hold
a RWLOCK READ lock on the specified rwlock, this constitutes a fatal error and the program
immediately ends. Otherwise, the invoking thread is blocked until the RWLOCK READ lock
can be “atomically upgraded” to an RWLOCK WRITE lock. While a thread is blocked in
rwlock promote(), no other thread will obtain an RWLOCK WRITE or RWLOCK READ lock on
the specified rwlock before the promotion to RWLOCK WRITE completes.

Barry proposes replacing the two lines of bad “STEP 2: Promote...” code above with one line of
code, namely the invocation of rwlock promote(&list->lock);.

As Barry explains his proposal, you have a sinking feeling. Though Barry assures you that he has
figured out how to rewrite his rwlock implementation to provide an rwlock promote() that fully
complies with the specification above, you regretfully explain to him that this approach has a fatal
flaw.

(b) 10 points Summarize the flaw in a sentence or two and also provide an execution trace
which clearly and compellingly illustrates how this flaw will appear. Assume his rwlock promote()

(and his other readers/writers lock code) works exactly according to specification, and also
assume, for exam purposes, that necessary library and system call invocations aren’t forced
to fail by unfortunate circumstances.

Page 13

Andrew ID:

You may use this page as extra space for the rwlock question if you wish.

Page 14

Andrew ID:

5. 15 points Consider the following critical-section protocol:

volatile int stall[2] = { 1, 1 };

1. do {

2. ...remainder section...

3. do {

4. stall[i] = 1 - stall[j]; // I stall iff other thread isn’t.

5. } while (!stall[j]);

6. ...critical section...

7. stall[i] = 1;

8. } while (1);

This protocol is presented in “standard form,” i.e.,

1. When process 0 is running this code, i == 0 and j == 1; when process 1 is running this
code, i == 1 and j == 0, so i means “me” and j means “the other process.”

2. Lines 3–5 are can be thought of roughly as “acquiring a lock” and line 7 can be thought
of roughly as “releasing the lock.”

(a) 10 points There is a problem with this protocol. That is, it does not ensure that all three
critical-section algorithm requirements are always met. Identify a requirement which is
not met and lay out a scenario which demonstrates your claim. Use the format presented
in class, i.e.,

P0 P1

stall[0] = 99;

stall[1] = 103;

You may introduce temporary variables or other obvious notation as necessary to improve
the clarity of your answer. Be sure that the execution trace you provide us with is easy to

read and conclusively demonstrates the claim you are making. It is possible to answer this
question with a brief, clear trace, so you should do what is necessary to ensure that you
do.

Page 15

Andrew ID:

You may use this page as extra space for the critical-section protocol question if you wish.

(b) 5 points Show, with a clear and convincing trace, that a different critical-section algo-
rithm requirement also does not hold.

Page 16

Andrew ID:

You may use this page as extra space for the critical-section protocol question if you wish.

Page 17

Andrew ID:

6. 10 points Nuts & Bolts.

Below are some register dumps produced by the “pathos” P2 reference kernel when it decided to
kill a thread. Your job is to carefully consider each register dump and:

1. Determine which register’s “wrong value” caused the thread to run an instruction which
resulted in a fatal exception.

2. Briefly state the most plausible way you think that register could have taken on that value
(i.e., try to describe a bug which could have this effect).

3. Then write a small piece of code which would cause the thread to die in the fashion indicated by
the register dump. Most answers will probably be in assembly language, but C is acceptable
as well. Your code should assume execution begins in main(), which has been passed the
typical two parameters in the typical fashion.

Your code doesn’t need to reproduce the register dump exactly—for example, we won’t require you
to pad your code so that a faulting instruction has exactly the same address as what appears in
the register dump.

Please be sure that your description of the fatality and the code, taken together, clearly support
your diagnosis.

(Continued on next page)

Page 18

Andrew ID:

(a) Registers:

eax 00000000 ebx 00000000 ecx 00000000 edx 00000004

edi 00000000 esi 00000000 ebp ffffffdd

esp ffffffd5 ss 0000002b eip ffefffdd cs 00000023

ds 002b es 002b fs 002b gs 002b

eflags 00210246

Page 19

Andrew ID:

(b) Registers:

eax 00000001 ebx 010000af ecx ffffffd1 edx 00000000

edi 00000000 esi 00000000 ebp ffffffdd

esp 00002fbb ss 0000002b eip 0100000c cs 00000023

ds 002b es 002b fs 002b gs 002b

eflags 00210282

Page 20

Andrew ID:

System-Call Cheat-Sheet

/* Life cycle */

int fork(void);

int exec(char *execname, char *argvec[]);

void set_status(int status);

void vanish(void) NORETURN;

int wait(int *status_ptr);

void task_vanish(int status) NORETURN;

/* Thread management */

int thread_fork(void); /* Prototype for exam reference, not for C calling!!! */

int gettid(void);

int yield(int pid);

int deschedule(int *flag);

int make_runnable(int pid);

int get_ticks();

int sleep(int ticks); /* 100 ticks/sec */

/* Memory management */

int new_pages(void * addr, int len);

int remove_pages(void * addr);

/* Console I/O */

char getchar(void);

int readline(int size, char *buf);

int print(int size, char *buf);

int set_term_color(int color);

int set_cursor_pos(int row, int col);

int get_cursor_pos(int *row, int *col);

/* Miscellaneous */

void halt();

int ls(int size, char *buf);

/* "Special" */

void misbehave(int mode);

If a particular exam question forbids the use of a system call or class of system calls, the presence
of a particular call on this list does not mean it is “always ok to use.”

Page 21

Andrew ID:

Thread-Library Cheat-Sheet

int mutex_init(mutex_t *mp);

int mutex_destroy(mutex_t *mp);

int mutex_lock(mutex_t *mp);

int mutex_unlock(mutex_t *mp);

int cond_init(cond_t *cv);

int cond_destroy(cond_t *cv);

int cond_wait(cond_t *cv, mutex_t *mp);

int cond_signal(cond_t *cv);

int cond_broadcast(cond_t *cv);

int thr_init(unsigned int size);

int thr_create(void *(*func)(void *), void *arg);

int thr_join(int tid, void **statusp);

void thr_exit(void *status);

int thr_getid(void);

int thr_yield(int tid);

int sem_init(sem_t *sem, int count);

int sem_wait(sem_t *sem);

int sem_signal(sem_t *sem);

int sem_destroy(sem_t *sem);

int rwlock_init(rwlock_t *rwlock);

int rwlock_lock(rwlock_t *rwlock, int type);

int rwlock_unlock(rwlock_t *rwlock);

int rwlock_destroy(rwlock_t *rwlock);

If a particular exam question forbids the use of a library routine or class of library routines, the
presence of a particular routine on this list does not mean it is “always ok to use.”

Page 22

Andrew ID:

Useful-Equation Cheat-Sheet

cos2 θ + sin2 θ = 1

sin(α ± β) = sin α cos β ± cos α sin β

cos(α ± β) = cos α cos β ∓ sin α sin β

sin 2θ = 2 sin θ cos θ

cos 2θ = cos2 θ − sin2 θ

eix = cos(x) + i sin(x)

cos(x) =
eix + e−ix

2

sin(x) =
eix − e−ix

2i

∫

ln x dx = x ln x − x + C

∫

∞

0

√
x e−x dx =

1

2

√
π

∫

∞

0

e−ax
2

dx =
1

2

√

π

a
∫

∞

0

x2e−ax
2

dx =
1

4

√

π

a3
when a > 0

Γ(z) =

∫

∞

0

tz−1e−t dt

ih̄
∂

∂t
Ψ(r, t) = ĤΨ(r, t)

ih̄
∂

∂t
Ψ(r, t) = − h̄2

2m
∇2Ψ(r, t) + V (r)Ψ(r, t)

E = hf =
h

2π
(2πf) = h̄ω

p =
h

λ
=

h

2π

2π

λ
= h̄k

∇ · E =
ρ

ε0

∇ ·B = 0

∇× E = −∂B

∂t

∇× B = µ0J + µ0ε0

∂E

∂t

Page 23

