
Computer Science 15-410: Operating Systems
Mid-Term Exam (C), Fall 2006

1. Please read the entire exam before starting to write. This should help you
avoid getting bogged down on one problem.

2. Be sure to put your name and Andrew ID below and also put your Andrew ID at the top of
each following page.

3. This is a closed-book in-class exam. You may not use any reference materials during the
exam.

4. If you have a clarification question, please write it down on the card we have provided. Please
don’t ask us questions of the form “If I answered like this, would it be ok?” or “Are you
looking for ...?”

5. The weight of each question is indicated on the exam. Weights of question parts are estimates
which may be revised during the grading process and are for your guidance only.

6. Please be concise in your answers. You will receive partial credit for partially correct answers,
but truly extraneous remarks may count against your grade.

7. Write legibly even if you must slow down to do so! If you spend some time to
think clearly about a problem, you will probably have time to write your answer legibly.

Andrew
Username

Full
Name

Question Max Points Grader

1. 15

2. 10

3. 15

4. 15

5. 20

75

Andrew ID: 2

I have not received advance information on the content of this 15-410 mid-term exam by dis-
cussing it with anybody who took part in the main exam session or via any other avenue.

Signature: Date

Andrew ID: 3

1. 15 points Medium answer.

Give a three-to-five sentence definition of each of the following terms as it applies to this course.
Your goal is to make it clear to your grader that you understand and can apply the concept when
necessary.

(a) 5 points Mode switch

(b) 5 points Context switch

Andrew ID: 4

(c) 5 points Memory barrier

Andrew ID: 5

2. 10 points Out of Business.

Consider the following code:

typedef struct biz {
mutex_t m;
cond_t new_work;
int going_out_of_business;
queue q;

} biz_t;

/** @brief Return next work item, or NULL if going out of business
* @param bp Pointer to a biz struct
*/

workitem *
find_work(biz_t *bp)
{
workitem *w = 0;

mutex_lock(&bp->m);

while(!w && !bp->going_out_of_business) {
if (!(w = (workitem *) dequeue(&bp->q)))
cond_wait(&bp->new_work, &bp->m);

}
mutex_unlock(&bp->m);
return(w);

}

For this question you may assume Project 2 thread library semantics and the existence of an
appropriate void enqueue(queue *q, void *item).

Andrew ID: 6

(a) 4 points Fill in the contents of add work():
/** @brief Add an item to the work queue
*
* @param bp Pointer to a biz struct
* @param w Pointer to a work item
* @return 0 for success, <0 for error
*/
int
add_work(biz_t *bp, workitem *w)
{

}

Andrew ID: 7

(b) 6 points Fill in the contents of go out of business():
/** @brief Shut down this particular business, no matter what
*
* @param bp Pointer to a biz struct
*/
void
go_out_of_business(biz_t *bp)
{

}

Andrew ID: 8

3. 15 points Traveling Traceback.

After completing your thread library, you find yourself enamored of the “Pebbles” kernel environ-
ment and are eager to port software to it. You realize that one key obstacle stands between you
and running your Project 0 traceback() implementation on top of the reference kernel: Pebbles
doesn’t have SIGSEGV, msync(), write(), or /proc.

(a) 7 points Briefly explain what you need to accomplish and a way of accomplishing it.
Make your explanation clear and convincing. As was the case for Project 0, you are not
required to traceback() a program with multiple running threads. Cleaner or more-
comprehensive solutions will generally receive more points.

Andrew ID: 9

(b) 8 points Embody your approach in code for this sub-case: you have an %ebp value stored in a C
variable, void *ebp, and you wish to obtain the value of ebp for the next-oldest frame. Write void
*fetch ebp(void *ebp). We will not deduct points for missing semi-colons or other compilation
errors. We will focus on whether your approach is fully thought out and will work.

Andrew ID: 10

4. 15 points Getting grilled.

Your student organization takes advantage of one of the last days with good weather to have a
grill party. For the purposes of this problem, assume that your organization agrees unanimously
on whether or not the burgers to be grilled will be vegetarian. However, some members demand
cheese on their burgers, while others reject cheese.

Your task is to codify the procedures to be followed by the event organizer, the chef, and attendees
who wish to eat burgers. Your roommate, an ECE major, points out that partygoers are not focused
solely on food, taking some time out to socialize, and claims this calls for an an asynchronous,
“clock-free” (or “data-flow”) design. This makes sense to you and you churn out the code below.
On the “everybody at the party will be a responsible adult” principle, you extend your Project 2
thread library to include thread detach(tid) which (“instantly”) reconfigures a thread so that
nobody needs to thr join() it—and, indeed, make it illegal to do so.

extern void
talk_to_roommate(int sec),
take_a_drink(int sec),
admire_scenery(int sec);

extern void *chef(void *ignored);
extern void *feeder(void *who);
extern void light_grill(void);
extern int somebody_looks_hungry(void),
complex_function(int who),
grill_temperature(void);

#define COOKING_TEMP 180 /* degrees */
#define COOKING_TIME 45 /* seconds */
#define NSLOTS 5
typedef enum { EMPTY, FIRST_SIDE, SECOND_SIDE, READY} slotstate;
struct slot {
slotstate state;
int has_cheese;
int since;

} grill[NSLOTS];

mutex_t grill_m;
cond_t flip;
cond_t ready;

Andrew ID: 11

/* main() runs "grill party organizer" thread */
int
main(void)
{
int person, tid, s;

thr_init(128*1024);
mutex_init(&grill_m);
cond_init(&flip);
cond_init(&ready);

for (s = 0; s < NSLOTS; s++) {
grill[s].state = EMPTY;
grill[s].has_cheese = 0;

}

light_grill();
while (grill_temperature() <= COOKING_TEMP)
sleep(1);

thr_create(chef, 0xfeedfeed);

while (grill_temperature() > COOKING_TEMP) {
talk_to_roommate(11); /* seconds */
while (person = somebody_looks_hungry()) {
while ((tid = thr_create(feeder, person)) < 0)
talk_to_roommate(3); /* seconds */

thr_detach(tid); /* now no thr_join() is necessary/possible */
}

}
return (0);

}

Andrew ID: 12

void * chef(void *ignored)
{
int background_task = 0, s;

while (grill_temperature() > COOKING_TEMP) {
switch(background_task++) {
case 0:
talk_to_roommate(17); /* seconds */
break;

case 1:
take_a_drink(3); /* seconds */
break;

case 2:
admire_scenery(12); /* seconds */
background_task = 0;
break;

}
/* Oh, right! The grill! */
mutex_lock(&grill_m);
for (s = 0; s < NSLOTS; s++) {
switch(grill[s].state) {
case EMPTY: /* start a new burger cooking */
grill[s].state = FIRST_SIDE;
grill[s].has_cheese = 0;
grill[s].since = time(NULL);
break;

case FIRST_SIDE:
if (time(NULL) - grill[s].since < COOKING_TIME)
continue;

if (grill[s].has_cheese)
panic("Must flip unflippable burger, slot %d\n", s);

grill[s].state = SECOND_SIDE;
grill[s].since = time(NULL);
cond_signal(&flip);
break;

case SECOND_SIDE:
if (time(NULL) - grill[s].since < COOKING_TIME)
continue;

grill[s].state = READY;
grill[s].since = time(NULL);
cond_signal(&ready);
break;

case READY:
cond_signal(&ready); break;

default:
panic("Grill on fire, slot %d state %d\n", s, grill[s].state);
break;

}
}
mutex_unlock(&grill_m);

}
return (0);

}

Andrew ID: 13

/* invariant: each cheese-seeker cheeses one
* burger and consumes one cheesed burger
*/
void *
feeder(void *who)
{
int want_cheese = complex_function((int) who);
int did_cheese = 0;
int done = 0;
int s;

mutex_lock(&grill_m);

while (!done) {

while (want_cheese && !did_cheese) {
/* Cheese a burger myself, don’t steal a pre-cheesed one. */
/* Make sure there’s enough time for cheese to melt. */

cond_wait(&flip, &grill_m);

for (s = 0; s < NSLOTS; s++) {
if ((grill[s].state == SECOND_SIDE) && !grill[s].has_cheese &&
(time(NULL) - grill[s].since < COOKING_TIME/2)) {
grill[s].has_cheese = 1;
did_cheese = 1;
break;

}
}

}

while (!done) {
cond_wait(&ready, &grill_m);
for (s = 0; s < NSLOTS; s++) {
if ((grill[s].state == READY) &&
(grill[s].has_cheese == want_cheese)) {
grill[s].state = EMPTY; /* yum! */
done = 1;

break;
}

}
}

}
mutex_unlock(&grill_m);
return (0);

}

Andrew ID: 14

Unfortunately, at the end of the party, the executive board of your organization meets in secret
and votes to strip you of your position and the associated title (“Supreme Grill Coder”).

(a) 5 points Identify and explain why your organization was unhappy with this approach. If
you can identify multiple problems, list up to three and indicate their order of seriousness
(i.e., “most”, “intermediate”, “least”). Make sure your explanation of each problem is
sufficient to provide a genuine diagnosis; no points will be assigned for unsupported claims.

Andrew ID: 15

(b) 10 points Explain how to fix the most-serious problem you identified. If you wish to make changes
to the data structures, your explanation can probably consist of declarations, a paragraph or two
of text motivating the data structure changes, and a small quantity of pseudo-code–just enough to
make it clear how the flow of your solution is different.

If you do not wish to make any data structure changes, your explanation can probably consist of a
description of how the code must be adjusted and a small quantity of pseudo-code.

It is not necessary for you to rewrite all of the code from scratch.

Andrew ID: 16

You may use this page as extra space for the grill question if you wish.

Andrew ID: 17

5. 20 points Consider the following critical-section protocol:

volatile boolean waiting[2] = { false, false };
volatile int turn = 0;

1. do {
2. waiting[i] = true;
3. if (turn == j) {
4. while (waiting[j]) {
5. /* wait with back-off */
6. waiting[i] = false;
7. waiting[i] = true;
8. }
9. } else {
10. while (waiting[j]) {
11. /* wait eagerly */
12. continue;
13. }
14. }
15. ...critical section...
16. turn = j;
17. waiting[i] = false;
18. ...remainder section...
19. } while (1);

(This protocol is presented in “standard form,” i.e., when process 0 is running this code, i == 0
and j == 1; when process 1 is running this code, i == 1 and j == 0, so i means “me” and j
means “the other process”)

There is a problem with this protocol. That is, it does not ensure that all three requirements
(mutual exclusion, progress, and bounded waiting) are always met. Identify a requirement
which is not met and lay out a scenario which demonstrates your claim. Use the format
presented in class, i.e.,

P0 P1
waiting[0] = false;

turn = 0;

Be sure that the execution trace you provide us with is easy to read and conclusively demon-
strates the claim you are making.

Andrew ID: 18

You may use this page as extra space for the critical-section protocol question if you wish.

