
1

Exam Feedback

Dave Eckhardt
de0u@andrew.cmu.edu

2

A Word on the Final Exam

� Disclaimer

� Past performance is not a guarantee of future results

� The course will change

� Up to now: basics

� What you need for Project 3

� Coming: advanced topics

� Design issues

� Things you won't implement

3

A Word on the Final Exam

� Examination will change to match

� More design

� Some things you won't have implemented

4

Basic Assumptions

� This is a C programming class!

� sizeof (char) == 1 /* 8 bits */

� sizeof (int) == 4 /* 32 bits, mostly true now */

� You need to really understand pointers

� Semantics

� '\0' isn't “just” an 1-byte zero – it's the zero char

� Other languages are excellent

� ...but very few are ok for writing OS code

5

A&B exams: Q1

� Definitions

� Papers looked mostly ok

6

A:Q2: malloc() loop in kernel

void foo(void)
{
 while (1)
 (void) malloc(1);
}

� What we're looking for

� Vicious memory leak

� Kernel memory is limited

� When it's gone no process can get more

7

B:Q2: user-mode “summation” loop

void bar(void) {
 int sum = 0, *ip; /*2 decl, 1 set*/
 ip = ∑
 while (1) { sum += *ip; --ip; }
}

� What we're looking for

� It's infinite stack growth

� Eventually the kernel will kill the process

� Other processes may suffer – or be killed!

8

A:Q3(a)

� Why multiple kernel stacks?

� Not: “protection”!

� “Monolithic kernel” model: all kernel code is trusted

� Key issue: preemption

� User process in kernel mode

� Stack contains: trap frame, N procedure call frames

� Switch to another process: copy all that around?

� From/to where??? Wouldn't that be a stack too?

9

A:Q3(b) - How to set kernel stack size

� Kernel virtual memory size typically fixed, small

� (Why small?)

� Large stacks means fewer stacks, so fewer threads

� Not: “ run it and see what happens”

� Good: examine call chains, local variable usage

� Very good: factor in interrupt handlers!

10

B:Q3(a) – How many page faults?

void foo(void) {
 int i; char x[2000];
 for (i = 0; i < 2000; i++)
 x[i] = '\0';
}

� What we wanted to see

� Stack and code are involved

� Page alignment may not be ideal even if size fits

� Minimum “ good” answer: 4 pages

� Competitive paging: easy to get ~4k/~6k faults

11

B:Q3(b) – Stack growth, wild access

� “ stack growth due to one memory reference”
void foo(void) {
 char x[65536];
 x[0] = '\0';
}
pushl %ebp
movl %esp,%ebp
subl $65536,%esp
movb $0,-65536(%ebp) ; memory ref

� How far is too far? Not right: “ one page”

12

B:Q3(b) – Good vs. bad?

void one(void) {
 double a[1024];
 int i;

 for (i = 1024;
 i >= 0;
 i--)
 a[i] = 0.0L;
}

void one(void) {
 double a[1024];
 int i;

 for (i = 0;
 i < 1024;
 i++)
 a[i] = 0.0L;
}

13

B:Q3(b) - Stack growth, wild access

� Also not:

� Let stack grow all the way to top of heap

� That means no such thing as a wild pointer access!

� Reasonable

� Some large size

� Halfway through the void

14

Other questions

� Q4 – deadlock

� Q5 – broken mutual exclusion protocol

