
15-410, S‘12!1

Real Time Systems 
 

Mar 18, 2012!

Roger B. Dannenberg !

Dave Eckhardt!

Additional material by Vishakha Gupta !

!

15-410  
“Arbitrarily Bad”!

15-410, S‘12!2

Scheduling on Mars!

What happened on Mars?!
  (1997)!

Photo credits: NASA

15-410, S‘12!3

What Happened On Mars?!
Mars Pathfinder probe (1997)!
Nice launch!
Nice transit!
Nice de-orbit!
Nice thump-down (inflatable air-bag)!
Nice rover disembarkation!
Nice rover spontaneous reboots!

Photo credits: NASA

15-410, S‘12!4

Hardware Design!!

Bus

Instrument
#1

Instrument
#2

Instrument
#3

Computer
and
Bus

Controller

Weather Sensors

15-410, S‘12!5

Software Design!

Bus
Activity!

Distribute
Data!

Bus 
Sched!

Pri: 1!Pri: 3!

T1! T2!
Other Computation

REPEAT…

So: transfer data
 compute
 transfer data
 compute
 …

15-410, S‘12!6

Software Design!

Bus
Activity!

Distribute
Data!

Bus 
Sched!

Pri: 1!Pri: 3!

T1! T2!
Other Computation

REPEAT…

T1 < T2 or else system reboots!!!!

15-410, S‘12!7

Software Design!

Bus
Activity!

Distribute
Data!

Bus 
Sched!

Pri: 1!Pri: 3!

Other Computation
T1! T2!

Other threads:!
!W (weather data thread): low priority!
!Many medium priority tasks!

Distribute Data sends data to W via a software
pipe facility!
!

15-410, S‘12!8

What could go wrong?!

Weather thread (W) locks pipe to read data!
High-priority Distribute Data must wait to write data!

Photo credit: NASA

15-410, S‘12!9

What could go wrong?!

W locks pipe structure to read message!
Interrupt makes other tasks runnable!

  Higher priority, so preempt W!
  W does not release lock for a long time…!

 Distribute Data becomes runnable!
  Very high priority, so preempts other tasks!
  Distribute Data tries to send data to W, but blocks!
  Other tasks resume, run for a long time…!

!

15-410, S‘12!10

Priority Inversion!

Bus
Activity!

Distribute  
Data!

Bus 
Sched!

Pri: 1!Pri: 3!

W

Other Tasks!
T2

T1 < T2 : Oh no! system reboots!!!!⁄

Attempt lock 
and block! time

15-410, S‘12!11

W (pri 5)

Priority Inversion!
Bus
Activity!

Distribute  
Data!

Bus 
Sche
d!

Pri: 1!Pri: 3!

W

Other Tasks!

T2 Attempt lock 
and block!

Distribute  
Data (pri 3)!

Wait for lock

Other Tasks (pri 4)

Wait for CPU What if W could
“borrow” Distribute
Data’s priority?

15-410, S‘12!12

Priority Inheritance!

Bus
Activity!

Distribute  
Data!

Bus 
Sched!

Pri: 1!Pri: 3!

W

Other Tasks!

Inherit priority from Distribute Data!
Exit critical section, release lock!
Resume low priority!

Attempt lock 
and block!

Acquire lock!

15-410, S‘12!13

History of an Idea!

Priority Inheritance Protocols: An Approach to
Real-Time Synchronization!
  IEEE Transactions on Computers 39:9!

  Lui Sha (CMU SEI)!
  Ragunathan Rajkumar (IBM Research ⇒ CMU ECE)!
  John Lehoczky (CMU Statistics)!

15-410, S‘12!14

History of an Idea!

Events!
  1987-12 “Manuscript” received!
  1988-05 Revised!
  1990-09 Published!
  ???? Implemented in Wind River vxWorks RTOS!
  1997-07 Rescues Mars Pathfinder!

History courtesy of Mike Jones and Glen Reeves!
  http://www.cs.cmu.edu/~rajkumar/mars.html!
  http://www.cs.duke.edu/~carla/mars.html!

15-410, S‘12!15

Test Your Understanding!!

What could go wrong with an atomic exchange/spin
lock?!

Assume threads have fixed priorities.!
!
Explain how priority inversion could arise from a call

to malloc.!
!

15-410, S‘12!16

Real-Time Systems!

Types of Systems and Scheduling!
Rate Monotonic Scheduling!
Earliest Deadline First Scheduling!
Real-Time Audio Application/OS Interactions!
!

15-410, S‘12!17

Embedded Systems Scheduling!
One Big Loop!

  Polled I/O!
  One thread: while (true) { task1(); task2(); … }!

Time-driven: wait for next period at top of loop!
Multiple threads!

  Round-Robin, or  
Time-driven: run tasks at fixed frequencies!

  Can incorporate interrupt-driven I/O!

Static Priority-based Scheduling/Rate Monotonic !
Deadline Scheduling!
!
!

15-410, S‘12!18

Rate Monotonic Scheduling!

A method of assigning fixed priorities to a set of
periodic processes!

Higher rate (frequency) ⇒ Higher priority!
Formal framework for reasoning about schedulability!
Schedulable if:!

preemption + execution + blocking < deadline!
!
=> Schedulability is a key question for designers <=!

15-410, S‘12!19

Assumptions!

Periodic tasks!
Tasks become ready to execute at beginning of their

periods!
Tasks runnable until execution is complete (1 burst)!
Task deadlines are always start of next period!
No task is more important/critical than another!
Tasks account for all execution time!

  Task switching is instantaneous!
  No interrupts!

15-410, S‘12!20

Schedulability Tests!

Utilization Bound Test - fast, conservative!
!
Response Time Test - slower, exact!
!
!

15-410, S‘12!21

Utilization!

Computation time: Ci!
Period: Ti, !
Utilization: Ui = Ci/Ti!

Total Utilization: ∑Ui!

Note that 0 < ∑Ui < 1!

15-410, S‘12!22

Example!

Total utilization for 3 tasks is .200 + .267 + .286 = .753!

Example from 14342 –
Fundamentals of
Embedded Systems

15-410, S‘12!23

Utilization Bound Test!

Are all my tasks  
schedulable?!

Rate Monotonic  
Scheduling:!
  Utilization for n tasks: U(n) = n(21/n – 1)!
  This is a worst case (lower) bound!

Test: (∑ Ui) < U(n)!

0

0.25

0.5

0.75

1

0 5 10

Number of Tasks

U
t
il
iz

a
t
io

n

15-410, S‘12!24

Example!

Total utilization for 3 tasks is .200 + .267 + .286 = .753!
U(3) = .779!
!
Total utilization for 3 tasks < U(3)!
The periodic tasks in the sample problem are schedulable!
According to the upper bound (UB) test!

Example from 14342 –
Fundamentals of
Embedded Systems

15-410, S‘12!25

Timeline for the example!

15-410, S‘12!26

Response Time Test!

Theorem: For a set of independent periodic tasks, if each
task meets its deadline with worst case task phasing, the
deadline will always be met

System might be schedulable with utilization > U(n), but it
depends on the particular task mix

15-410, S‘12!27

Rate Monotonic Extensions!

Blocking:!
  preemption + execution + blocking < deadline!

Interrupt tasks!
Addition/Deletion of tasks!
Aperiodic tasks with computational budget !

15-410, S‘12!28

Earliest Deadline First!

A dynamic scheduling principle!
Assume independent tasks!
Tasks in a priority queue, ordered by deadline!
With periodic processes with deadlines = periods,

EDF has a utilization bound of 100%  
(optimal)!

!

15-410, S‘12!29

Example!

15-410, S‘12!30

+ Optimal for schedulable task set!
+ Task set need not be periodic!
+ Deadlines need not equal periods!
– Overload behavior can be arbitrarily bad!
– Considered more difficult to implement than static

priority schemes!

Pros and Cons!

15-410, S‘12!31

Rate Monotonic vs.  
Earliest Deadline First!
Rate Monotonic!

  More widely supported!
  Maps onto static priority schedulers (NT, CE, Linux, OS X)!

Earliest Deadline First!
  Sometimes higher utilization!
  Less restrictive assumptions!

Neither is really complicated!
  If you have a well-defined problem, analysis is

straightforward!
  If not, think carefully about failure modes (which are

different) and costs!

15-410, S‘12!32

Real World/Real Time Audio!

What do you have to work with?!
What are the implications?!
Putting it together.!
What performance can you get?!
 !

15-410, S‘12!33

Audio: What Can You Assume?!
Potential for priority inversion!
System response time is an issue: 

system_latency + preemption + execution + blocking < deadline!

Static Priority Scheduling!
(At least) two application classes:!

  High audio latency (iTunes, sound effects, audio editor)!
  Compute audio well ahead (>100 ms)!
  Leave it to device driver to deliver samples on time!

  Low audio latency (VoIP, Guitar Hero, real-time music synthesis)!
  Audio depends on real-time input!
  Only compute 1-10ms ahead of time!
  User-level application scheduling is critical!

!

!

15-410, S‘12!34

Low Audio Latency
Implications!
Need to use static priority scheduling ⇒!

  1ms to compute audio < 10ms to refresh display !
!Priority Inversion is a problem ⇒!
! !No locking ⇒!
! ! !No shared data structures ⇒!
! ! ! Threads communicate via lock-free FIFO!
! ! ! No malloc ⇒!
! ! ! ! independent memory pool per thread!
! ! !OR only lock-free shared structures ⇒ !
! ! ! No malloc ⇒ write your own!
! ! !+ lots of synchronous polling for I/O!

!

15-410, S‘12!35

Putting It Together!
while (true) {
 audio_read(&buf);
 while (!input.empty())
 process_input();
 process_audio(&buf);
 // maybe send data to
 // output fifo
 audio_write(&buf);
}

Audio Processing

Main Program

FIFOs
(No other
shared
memory)

15-410, S‘12!36

What Performance Can You
Get?!
Current audio applications can deliver end-to-end

latencies in the 3 to 10ms range.!
Note: “native” windows audio is quite poor, but 3rd

party (ASIO) drivers exist to improve performance.!
A big issue is “system latency”:!

  SGI/Irix was a leader: hard real-time kernel!
  Linux has evolved rapidly (now <1ms)!
  OS X: special real-time threads for audio!
  Windows: worst-case system latency is high!

15-410, S‘12!37

Priority Inversion !
Real-Time Scheduling!

  Rate Monotonic!
  Earliest Deadline First!

Implications of Real-World OS on Real-Time
Applications!
  Polling!
  Locks limited by Priority Inversion!
  (Un)shared memory!

Summary!

15-410, S‘12!38

Blatant Plug!

Introduction to Computer Music !
Spring 2013!
  Musical signal processing for computer scientists!
  Music synthesis algorithms!
  Music composition projects!
!

15-410, S‘12!39

Further Reading!

Comparing Rate Monotonic to Earliest Deadline First:!
!

  Giorgio C. Buttazzo, “Rate Monotonic vs. EDF: Judgment
Day,” Real Time Systems 29(1) (Jan 2005), The
Netherlands: Springer, pp 5-26.!

