
Systematic Dynamic Race Condition Detection
more clever than “slaughter cho2” since 2011.

Ben Blum (bblum@andrew.cmu.edu)

Carnegie Mellon University - 15-410

2012, April 6

Ben Blum (CMU 15-410) Landslide 1 / 39



Introduction Introduction

Outline

Theory: Seeing race conditions in a new way
I Case study (example)
I The execution tree
I Decision points

Technique: Systematic testing
I Requirements
I Challenges and feasibility

Tool: Landslide
I How it works
I The user-tool relationship
I User study (that’s you!)

Ben Blum (CMU 15-410) Landslide 2 / 39



Introduction Race Conditions

Case Study

int thread_fork()
{

thread_t *child = spawn_new_thread();
add_to_runqueue(child);
return child->tid;

}

Ben Blum (CMU 15-410) Landslide 3 / 39



Introduction Race Conditions

Decision Points (“good” case)

Thread 1 Thread 2
spawn_new_thread
add_to_runqueue (new thread)
return child->tid

vanish
(TCB gets freed) (voluntary reschedule)

Ben Blum (CMU 15-410) Landslide 4 / 39



Introduction Race Conditions

Decision Points (race condition)

Thread 1 Thread 2
spawn_new_thread
add_to_runqueue (new thread + preempted)

vanish
(TCB gets freed) (voluntary reschedule)

return child->tid (bad!)

Ben Blum (CMU 15-410) Landslide 5 / 39



Introduction Race Conditions

Testing Mechanisms

Stress testing: slaughter cho2 and friends
I Attempting to exercise as many interleavings as practical
I Exposes race conditions at random

I “If a preemption occurs at just the right time. . . ”
I Cryptic panic messages or machine reboots

What if. . .
I Make educated guesses about when to preempt
I Preempt enough times to run every single interleaving
I Tell the story of what actually happened.
I Overlook fewer bugs!

Ben Blum (CMU 15-410) Landslide 6 / 39



Introduction Race Conditions

A different way of looking at race conditions. . .

Ben Blum (CMU 15-410) Landslide 7 / 39



Introduction Race Conditions

Execution Tree

Ben Blum (CMU 15-410) Landslide 8 / 39



Introduction Race Conditions

Execution Tree

Ben Blum (CMU 15-410) Landslide 9 / 39



Introduction Race Conditions

Execution Tree

Ben Blum (CMU 15-410) Landslide 10 / 39



Introduction Race Conditions

Execution Tree

Ben Blum (CMU 15-410) Landslide 11 / 39



Introduction Race Conditions

Decision Points

A decision point is. . .

A code location where being preempted causes different behaviour.
I Intuitively: Somewhere that interesting interleavings can happen

around.
Examples:

I A new thread becomes runnable
I Voluntary reschedule (e.g. yield, cond_wait)
I Synchronization primitives

Ben Blum (CMU 15-410) Landslide 12 / 39



Systematic Testing

Systematic Testing

Ben Blum (CMU 15-410) Landslide 13 / 39



Systematic Testing

Systematic Testing

Systematic testing is:
I Systematically enumerating different interleavings

I Intuitively: Generate many “tabular execution traces”
I Exploring all branches in these trees

I (by controlling scheduling decisions at decision points)
I In practice: Depth-first search of branches

Ben Blum (CMU 15-410) Landslide 14 / 39



Systematic Testing Requirements

Execution Tree Exploration

Important point: When does a branch end?
I All threads run to completion, or
I A bug is detected

Backtracking:
I Identify a decision point to choose differently
I Reset machine state and start over
I Replay test from the beginning, with different choices

Ben Blum (CMU 15-410) Landslide 15 / 39



Systematic Testing Requirements

More on Decision Points

Important point: What does “all possible interleavings” mean?

One extreme: Decide at every instruction
I Good news: Will find every possible race condition.
I Bad news: Runtime of test will be impossibly large.

Other extreme: Nothing is a decision point
I Good news: Test will finish quickly.
I Bad news: Only one execution was checked for bugginess.
I Bad news: No alternative interleavings explored.

I Makes “no race found” a weak claim.

Ben Blum (CMU 15-410) Landslide 16 / 39



Systematic Testing Requirements

More on Decision Points

Sweet spot: Insert a thread switch everywhere it “might matter”.

When do we fear being preempted?
I New threads becoming runnable (fork, cond_signal, etc)

I Preemptions may cause it to run before we’re ready
I Synchronization primitives (mutex_lock, etc)

I If used improperly. . .
I Unprotected shared memory accesses

I May result in data structure corruption

Finding the sweet spot is a joint effort between programmer and tool.
(More on this later.)

Ben Blum (CMU 15-410) Landslide 17 / 39



Systematic Testing Challenges

Controlling Scheduling Decisions

Control over sources of nondeterminism
I Device interrupts/input

I Disk drivers: when disk reads finish
I Ethernet drivers: when packets arrive

I To control thread switches in a 410 kernel, vary when clock ticks
happen.

Ben Blum (CMU 15-410) Landslide 18 / 39



Systematic Testing Challenges

Memory Interposition

In order to find use-after-free, need to know:
I When objects are free()d
I When threads access shared memory in the heap

Solution: Keep track of all memory events
I All calls to malloc/free
I All shared memory reads/writes

Ben Blum (CMU 15-410) Landslide 19 / 39



Systematic Testing State Space Explosion

State Space Explosion

State spaces grow exponentially
I With d decision points, k runnable threads, size dk .
I Threatens our ability to explore everything.
I Fortunately, some sequences result in identical states.

Partial Order Reduction can help.
I Complicated algorithm; ask me later for details.
I Intuitive explanation follows.

Ben Blum (CMU 15-410) Landslide 20 / 39



Systematic Testing State Space Explosion

State Space Explosion

Ben Blum (CMU 15-410) Landslide 21 / 39



Systematic Testing State Space Explosion

State Space Explosion

Ben Blum (CMU 15-410) Landslide 22 / 39



Systematic Testing State Space Explosion

State Space Explosion

Ben Blum (CMU 15-410) Landslide 23 / 39



Landslide

Landslide

Ben Blum (CMU 15-410) Landslide 24 / 39



Landslide

About The Project

5th year MS since June 2011

Working with Garth Gibson, Jiri Simsa

Landslide: Shows that your Pebbles are not as stable as you thought.

Ben Blum (CMU 15-410) Landslide 25 / 39



Landslide How Landslide Works

Landslide in Simics

As a Simics module, Landslide knows:
I Every instruction the kernel executes
I Every memory address the kernel reads/writes

Artificially causes timer interrupts

Checkpointing/backtracking via Simics bookmarks

Ben Blum (CMU 15-410) Landslide 26 / 39



Landslide How Landslide Works

Anatomy

Ben Blum (CMU 15-410) Landslide 27 / 39



Landslide How Landslide Works

Identifying Bugs

Landslide can definitely discover:
I Kernel panics
I Deadlock
I Use-after-free / double-free

Landslide can reasonably suspect:
I Memory leak
I Progress sense (halting problem)

Ben Blum (CMU 15-410) Landslide 28 / 39



Landslide Using Landslide

Using Landslide

Ben Blum (CMU 15-410) Landslide 29 / 39



Landslide Using Landslide

In Which Ben Offers Help

This is something you can try!

Mutual benefit
I Landslide may help you find bugs
I You may help Ben evaluate his thesis project

Ben Blum (CMU 15-410) Landslide 30 / 39



Landslide Using Landslide

Keeping It Real

Finding race conditions is hard for humans.

It is hard for computer programs too.

Landslide is not an oracle.

Ben Blum (CMU 15-410) Landslide 31 / 39



Landslide Using Landslide

Annotating Your Kernel

Step 1

Your kernel needs to say when certain events happen:
I When do threads become runnable / descheduled?
I When does the scheduler switch threads?

Time estimate: 40 minutes

Ben Blum (CMU 15-410) Landslide 32 / 39



Landslide Using Landslide

Configuring Landslide

Step 2

Edit config.landslide with some details and tweaks
Fill in two implementation-dependent C functions in Landslide (≤10 lines)

Time estimate: 60 minutes

Ben Blum (CMU 15-410) Landslide 33 / 39



Landslide Using Landslide

Configuring Decision Points

Landslide automatically identifies a minimal set of decision points.
I It might find bugs.
I It might overlook more fine-grained interleavings.

With help from you, it could find more.
I Optional annotation: tell_landslide_decide()
I Hints to where a context switch should be forced.
I Inside every call to mutex_lock. . .

Ben Blum (CMU 15-410) Landslide 34 / 39



Landslide Using Landslide

Quick Demo

Ben Blum (CMU 15-410) Landslide 35 / 39



Landslide User Study

In Which Ben Offers Help - Warning

If you are already struggling, this will not “save” you.
I False-negatives: not guaranteed to find races at all
I Research-quality: possibly difficult to integrate with your kernel
I Finishing the kernel project is more important.

You should:
I Be expecting an A or B
I Be able to turn in without late days (if you really had to)
I Be looking for. . .

I That “one pesky race”
I A race that stress-testing missed
I Or just familiarity with a new technique

Ben Blum (CMU 15-410) Landslide 36 / 39



Landslide User Study

In Which Ben Offers Help

Your kernel
I Must load the shell and run programs
I fork, exec, vanish, wait, readline
I Must never spin-wait (see hurdle form!)
I Should assert() important invariants

I Think of panic() as tell_landslide_bug()

Ben Blum (CMU 15-410) Landslide 37 / 39



Landslide User Study

In Which Ben Offers Help

User study next week, starting Monday

Expect to spend:
I Up to 4 hours, just to try it out.
I 6-8 hours, if you find a bug and track it down.
I More, for multiple bugs or the truly dedicated. . .

Give feedback (intuitive? frustrating? found bugs?)

Watch 410.announce for details!

Ben Blum (CMU 15-410) Landslide 38 / 39



Landslide End

Questions?

Ben Blum (CMU 15-410) Landslide 39 / 39


	Introduction
	Introduction
	Race Conditions

	Systematic Testing
	Requirements
	Challenges
	State Space Explosion

	Landslide
	How Landslide Works
	Using Landslide
	User Study
	End


