
15-410, S'12

File System (Internals)
Mar. 28, 2012
Dave EckhardtDave Eckhardt

Garth GibsonGarth Gibson

Greg HartmanGreg Hartman

L26_Filesystem

15-410
“...Does this look familiar?...”

15-410, S'102

Synchronization

TodayToday
 Chapter 11 (not: Log-structured, NFS, WAFL)

15-410, S'103

Outline

File system code layers (abstract)File system code layers (abstract)

Disk, memory structuresDisk, memory structures

Unix “VFS” layering indirectionUnix “VFS” layering indirection

DirectoriesDirectories

Block allocation strategies, free spaceBlock allocation strategies, free space

Cache tricksCache tricks

Recovery, backupsRecovery, backups

15-410, S'104

File System Layers

Device driversDevice drivers
 read/write(disk, start-sector, count)

Block I/OBlock I/O
 read/write(partition, block) [cached]

File I/OFile I/O
 read/write(file, block)

File systemFile system
 manage directories, free space

15-410, S'105

File System Layers

Multi-filesystem namespaceMulti-filesystem namespace
 Partitioning, names for devices
 Mounting
 Unifying multiple file system types

 UFS, ext2fs, ext3fs, zfs, FAT, 9660, ...

15-410, S'106

Shredding Disks

Split disk into Split disk into partitionspartitions/slices/minidisks/.../slices/minidisks/...
– MBR (PC): 4 “partitions” – Windows, FreeBSD, Plan 9, ...

– APM (Mac): “volumes” – can split: OS 9, OS X, user files

– GPT (new, multi-platform) - many partitions, long names

Or: glue disks together into Or: glue disks together into volumesvolumes/logical disks/logical disks

A partition (of a disk or of a volume) may contain...A partition (of a disk or of a volume) may contain...
– Paging area

● Indexed by in-memory structures
● “random garbage” when OS shuts down

– File system
● Block allocation: file # ⇒ block list

● Directory: name ⇒ file #

15-410, S'107

Shredding Disks

fdisk -s

/dev/ad0: 993 cyl 128 hd 63 sec

Part Start Size Type Flags

 1: 63 1233729 0x06 0x00

 2: 1233792 6773760 0xa5 0x80

(A 4-gigabyte disk)

15-410, S'108

Shredding Disks

8 partitions:

size offset fstype [fsize bsize bps/cpg]

 a: 131072 0 4.2BSD 2048 16384 101 # (Cyl. 0 - 16*)

 b: 393216 131072 swap # (Cyl. 16*- 65*)

 c: 6773760 0 unused 0 0 # (Cyl. 0 - 839)

 e: 65536 524288 4.2BSD 2048 16384 104 # (Cyl. 65*- 73*)

 f: 6183936 589824 4.2BSD 2048 16384 89 # (Cyl. 73*- 839*)

Filesystem 1K-blocks Used Avail Capacity Mounted on

/dev/ad0s2a 64462 55928 3378 94% /

/dev/ad0s2f 3043806 2608458 191844 93% /usr

/dev/ad0s2e 32206 7496 22134 25% /var

procfs 4 4 0 100% /proc

(FreeBSD 4.7 on ThinkPad 560X)

15-410, S'109

Disk Structures

Boot area (first block/track/cylinder)Boot area (first block/track/cylinder)
 Interpreted by hardware bootstrap (“BIOS”)
 May include partition table

File system control blockFile system control block
 Key parameters: #blocks, metadata layout
 Unix: “superblock”

““File control block” (Unix: “inode”)File control block” (Unix: “inode”)
 ownership/permissions
 data location

Possibly a free-space map as wellPossibly a free-space map as well

15-410, S'1010

Memory Structures

In-memory partition tablesIn-memory partition tables
 Sanity check file system I/O fits in correct partition

Cached directory informationCached directory information

System-wide open-file tableSystem-wide open-file table
 In-memory file control blocks

Process open-file tablesProcess open-file tables
 Open mode (read/write/append/...)
 “Cursor” (read/write position)

15-410, S'1011

VFS layer

GoalsGoals
 Allow one machine to use multiple file system types

 Unix FFS
 MS-DOS FAT
 CD-ROM ISO9660
 Remote/distributed: NFS/AFS

 Standard system calls should work transparently

Solution?Solution?

15-410, S'1012

VFS layer

GoalsGoals
 Allow one machine to use multiple file system types

 Unix FFS
 MS-DOS FAT
 CD-ROM ISO9660
 Remote/distributed: NFS/AFS

 Standard system calls should work transparently

SolutionSolution
 Insert a level of indirection!

15-410, S'1013

Single File System

n = read(fd, buf, size)

INT 54

sys_read(fd, buf, len)

rdblk(dev, N)sleep() wakeup()

namei() iget() iput()

startIDE() IDEintr()

15-410, S'1014

VFS “Virtualization”

n = read(fd, buf, size)

INT 54

ufs_iget() ufs_iput()

vfs_read()

ufs_read() procfs_read()

procfs_domem()

namei()

ufs_lookup()

15-410, S'1015

VFS layer – file system operations

These operate on file These operate on file systemssystems, not individual files, not individual files

struct vfsops {
 char *name;
 int (*vfs_mount)();
 int (*vfs_statfs)();
 int (*vfs_vget)();
 int (*vfs_unmount)();
 ...
}

15-410, S'1016

VFS layer – file operations

Each VFS provides an array of per-file methodsEach VFS provides an array of per-file methods
 VOP_LOOKUP(vnode, new_vnode, name)
 VOP_CREATE(vnode, new_vnode, name, attributes)
 VOP_OPEN(vnode, mode, credentials, process)
 VOP_READ(vnode, uio, readwrite, credentials)

Operating system provides fs-independent codeOperating system provides fs-independent code
 Validating system call parameters
 Moving data from/to user memory
 Thread sleep/wakeup

 Caches (data blocks, name ⇒ vnode mappings)

15-410, S'1017

Directories

Old: one namei() Old: one namei() ⇒⇒ VFS: fs-provided vnode method VFS: fs-provided vnode method
 vnode2 = VOP_LOOKUP(vnode1, name)

Traditional Unix FFS directoriesTraditional Unix FFS directories
 List of (name,inode #) - not sorted!
 Names are variable-length
 Lookup is linear

 How long does it take to delete N files?

Common alternative: hash-table directoriesCommon alternative: hash-table directories

15-410, S'1018

Allocation / Mapping

Allocation problemAllocation problem
 Where do I put the next block of this file?

 “Near the previous block” is not a bad idea
 Beyond that, it gets complicated

Mapping problemMapping problem
 Where was block 32 of this file previously put?
 Similar to virtual memory

 Multiple large “address spaces” specific to each file
 Only one underlying “address space” of blocks
 Source address space may be sparse!

15-410, S'1019

Allocation / Mapping

ContiguousContiguous

LinkedLinked

FATFAT

IndexedIndexed
Linked

Multi-level

Unix (index tree)

15-410, S'1020

Allocation – Contiguous

ApproachApproach
 File location defined as (start, length)

MotivationMotivation
 Sequential disk accesses are cheap
 Bookkeeping is easy

IssuesIssues
 Dynamic storage allocation (fragmentation, compaction)
 Must pre-declare file size at creation
 This should sound familiar

15-410, S'1021

Allocation – Linked

ApproachApproach
 File location defined as (start)
 Each disk block contains pointer to next block

MotivationMotivation
 Avoids fragmentation problems
 Allows file growth

Issues?Issues?

15-410, S'1022

Allocation – Linked

IssuesIssues
 508-byte blocks don't match memory pages
 In general, one seek per block read/written - slow!
 Very hard to access file blocks at random

 lseek(fd, 37 * 1024, SEEK_SET);

BenefitBenefit
 Can recover files even if directories destroyed

Common modificationCommon modification
 Link multi-block clusters, not blocks

15-410, S'1023

Allocation – FAT

Used by MS-DOS, OS/2, WindowsUsed by MS-DOS, OS/2, Windows
 Digital cameras, GPS receivers, printers, PalmOS, ...

Semantically same as linked allocationSemantically same as linked allocation
But next-block links stored “out of band” in a table

 Result: nice 512-byte sectors for data

Table at start of diskTable at start of disk
 Next-block pointer array
 Indexed by block number
 Next=0 means “free”

15-410, S'1024

Allocation – FAT

-1

-1
0
-1
3

5
2
7

hello.jav

 dir. c

0

1

 sys.ini 4

15-410, S'1025

Allocation - FAT

-1

-1
0
-1
3

5
2
7

hello.jav

 dir. c

0

1

 sys.ini 4

15-410, S'1026

Allocation - FAT

-1

-1
0
-1
3

5
2
7

hello.jav

 dir. c

0

1

 sys.ini 4

15-410, S'1027

Allocation - FAT

-1

-1
0
-1
3

5
2
7

hello.jav

 dir. c

0

1

 sys.ini 4

hello.jav: 0, 7

15-410, S'1028

Allocation – FAT

IssuesIssues
 Damage to FAT scrambles entire file system

 Solution: mirror the FAT

 Generally two seeks per block read/write
 Seek to FAT, read, seek to actual block (repeat)
 Unless FAT can be cached well in RAM

 Still somewhat hard to access random file blocks
 Linear time to walk through FAT

 FAT may be a “hot spot” (everybody needs to access it)
 Lots of FAT updates (near beginning of disk)

 Even if files being modified are far away

15-410, S'1029

Allocation – Indexed

MotivationMotivation
 Avoid fragmentation

problems
 Allow file growth
 Improve random access

ApproachApproach
 Per-file block array
 File block number

indexes into table, yields
disk block number

 No O(n) sequential steps

3001

-1
-1
-1
3002

101
100
99

-1

-1
-1
-1
6002

-1
-1
3004

15-410, S'1030

Allocation – Indexed

Allows “holes”Allows “holes”
 foo.c is sequential

 foo.db, blocks 1..3 ⇒-1
 logically “blank”

““sparse allocation”sparse allocation”
 a.k.a. “holes”
 read() returns nulls
 write() requires alloc

 file “size” ≠ file “size”
 ls -l index of last byte
 ls -s number of blocks

3001

-1
-1
-1
3002

101
100
99

-1

-1
-1
-1
6002

-1
-1
3004

foo.c foo.db

15-410, S'1031

Allocation – Indexed

How big should index block be?How big should index block be?
 Too small: limits file size
 Too big: lots of wasted pointers

Combining index blocksCombining index blocks
 Linked
 Multi-level
 What Unix actually does

15-410, S'1032

Linked Index Blocks

Last pointer indicates Last pointer indicates
next index blocknext index block

SimpleSimple

Access is not-so-randomAccess is not-so-random
 O(n/c) is still O(n)
 O(n) disk transfers

3001

45789
10460
10459
3002

101
100
99

-1

-1
-1
-1
-1

10463
10462
10461

15-410, S'1033

Multi-Level Index Blocks

Index blocks of index Index blocks of index
blocksblocks

Does this look familiar?Does this look familiar?

Allows Allows bigbig holes holes

10461
10460
10459
3002
3001
101
100
99

-1
-1
9988
9987

15-410, S'1034

Unix Index Blocks

IntuitionIntuition
 Many files are small

 Length = 0, length = 1, length < 80, ...

 Some files are huge (gigabytes... maybe terabytes!)

How do we solve this problem?How do we solve this problem?
 We are computer scientists!

15-410, S'1035

Unix Index Blocks

IntuitionIntuition
 Many files are small

 Length = 0, length = 1, length < 80, ...

 Some files are huge (gigabytes... maybe terabytes!)

How do we solve this problem?How do we solve this problem?
 We are computer scientists!

 So we realize when 57 levels of indirection would be slow!!!

15-410, S'1036

Unix Index Blocks

IntuitionIntuition
 Many files are small

 Length = 0, length = 1, length < 80, ...

 Some files are huge (gigabytes... maybe terabytes!)

““Clever heuristic” in Unix FFS inodeClever heuristic” in Unix FFS inode
 inode struct contains 12 “direct” block pointers

 12 block numbers * 8 KB/block = 96 KB
 Availability is “free” - must read inode to open() file anyway

 inode struct also contains 3 indirect block pointers
 single-indirect, double-indirect, triple-indirect

15-410, S'1037

Unix Index Blocks

106

105

501
502

102

101

16

15

18
17

500

100

1000 104
103

20

19

22

21

24
23

26

25

28
27

30

29

32
31

15-410, S'1038

Summary

Block-mapping problemBlock-mapping problem
 Similar to virtual-to-physical mapping for memory
 Large, often-sparse “address” spaces

 “Holes” not the common case, but not impossible

 Map any “logical address” to any “physical address”
 Key difference: file maps often don't fit in memory

““Insert a level of indirection”Insert a level of indirection”
 Multiple file system types on one machine
 Grow your block-allocation map
 ...

15-410, S'1039

Unix Index Blocks

16

15

18
17

-1
-1

-1

“Direct” block #s

Indirect pointer
Double-indirect

Triple-indirect

File stored at 15..18

15-410, S'1040

Unix Index Blocks

16

15

18
17

-1

100

-1

20

19

15-410, S'1041

Unix Index Blocks

102

101

16

15

18
17

500

100

-1

20

19

22

21

24
23

15-410, S'1042

Unix Index Blocks

106

105

501

502

102

101

16

15

18

17

500

100

1000 104

103

20

19

22

21

24

23

26

25

28

27

30

29

32

31

Triple indirect can address >> 232 bytes

15-410, S'1043

Tracking Free Space

Bit-vectorBit-vector
 1 bit per block: boolean “free”
 Check each word vs. 0
 Use “first bit set” instruction
 Text example

 1.3 GB disk, 512 B sectors: 332 KB bit vector

Need to keep (much of) it in RAMNeed to keep (much of) it in RAM

15-410, S'1044

Tracking Free Space

Linked list?Linked list?
 Superblock points to first free block
 Each free block points to next

Cost to allocate N blocks is linearCost to allocate N blocks is linear
 Free block can point to multiple free blocks

 512 bytes = 128 (4-byte) block numbers

 FAT approach provides free-block list “for free”

Keep free-Keep free-extentextent lists lists
 (block,sequential-block-count)

15-410, S'1045

Unified Buffer Cache

Traditional two-cache approachTraditional two-cache approach
 Page cache, file-system cache often totally independent

 Page cache chunks according to hardware page size
 File cache chunks according to “file system block” size
 Different code, different RAM pools

 How much RAM to devote to each one?

ObservationObservation
 Why not have just one cache?

 Mix automatically varies according to load

» “cc” wants more disk cache

» Firefox wants more VM cache

15-410, S'1046

Unified Buffer Cache - Warning!

““Virtual memory architecture in SunOS”Virtual memory architecture in SunOS”
Gingell, Moran, & Shannon

USENIX 1987 Summer Conference
“The work has consumed approximately four man-years of

effort over a year and a half of real time. A surprisingly large
amount of effort has been drained by efforts to interpose the
VM system as the logical cache manager for the file
systems…”

15-410, S'1047

Cache tricks

Read-aheadRead-ahead
for (i = 0; i < filesize; ++i)
 putc(getc(infile), outfile);

 System observes sequential reads
 File block 0, 1, 2, ...
 Can pipeline reads to overlap “computation”, read latency

» Request for block 2 triggers disk read of block 3

Free-behind / replace-behindFree-behind / replace-behind
 Discard buffer from cache when next is requested
 Good for large files
 “Anti-LRU” (evict “MRU” instead of “LRU”)

15-410, S'1048

Recovery

System crash...now what?System crash...now what?
 Some RAM contents were lost
 Free-space list on disk may be wrong
 Scan file system

 Check invariants

» Unreferenced files

» Double-allocated blocks

» Unallocated blocks
 Fix problems

» Expert user???

Modern approachModern approach
 “Journal” changes (see upcoming Transactions lecture)

15-410, S'1049

Backups

Incremental “Towers of Hanoi” approach - traditionalIncremental “Towers of Hanoi” approach - traditional
 Monthly: dump entire file system
 Weekly: dump changes since last monthly
 Daily: dump changes since last weekly
 Restore a file?

 Most-recent “monthly” tape definitely has a copy

» May be stale, so...
 Any one of the “weekly” tapes might have a copy (scan all)
 Any one of the “daily” tapes might have a copy (scan all)

15-410, S'1050

Backups

Merge approach (“TiBS”) - www.teradactyl.comMerge approach (“TiBS”) - www.teradactyl.com
 Something special about tape drives
 They run much faster when they're “streaming”

(continuous full speed, no start/stop)
 Collect changes since yesterday

 Scan file system by modification time

 “Output” tape drive has a blank tape
 “Input” tape drive streams yesterday's dump in

 Some files are un-changed: stream to output tape
 Some files are stale: replace them in output stream

 Keep as many tapes as you want to, recycle the rest
 Restoring is fast (stream one tape onto disks)
 Files stored (very) redundantly – good for reliability

15-410, S'1051

Backups

Snapshot approachSnapshot approach
 At midnight, stop writing into file system
 New writes go into a new file system

 Mostly pointers to yesterday's data
 Changes stored in the live file system

» Maybe entire files (copy-on-write)

» Maybe just new data blocks

 Great for users
 Old snapshots can be mounted (read-only)
 Accidentally delete a file? Get it from yesterday!
 AFS supports a simple version (see “OldFiles”)

15-410, S'1052

Summary

Block-mapping problemBlock-mapping problem
 Similar to virtual-to-physical mapping for memory
 Large, often-sparse “address” spaces

 “Holes” not the common case, but not impossible

 Map any “logical address” to any “physical address”
 Key difference: file maps often don't fit in memory

““Insert a level of indirection”Insert a level of indirection”
 Multiple file system types on one machine
 Grow your block-allocation map
 ...

15-410, S'1053

Further Reading

JournalingJournaling
 Prabhakaran et al., Analysis and Evolution of Journaling

File Systems (USENIX 2005)

Something cool which isn't journalingSomething cool which isn't journaling
 McKusick & Ganger: “Soft Updates: A Technique for

Eliminating Most Synchronous Writes in the Fast
Filesystem” (USENIX 1999)

Both papers appear in the “filesystem reliability” Both papers appear in the “filesystem reliability”
book report paper trackbook report paper track

