15-410

“..Does this look familiar?...”

File System (Internals)
Mar. 28, 2012

Dave Eckhardt
Garth Gibson
Greg Hartman

L26 Filesystem 15-410, S"12



Synchronization

Today
= Chapter 11 (not: Log-structured, NFS, WAFL)

15-410, S"10



Outline

File system code layers (abstract)
Disk, memory structures

Unix “VFS” layering indirection
Directories

Block allocation strategies, free space
Cache tricks

Recovery, backups

15-410, S"10



File System Layers

Device drivers
= read/write(disk, start-sector, count)

Block VO

= read/write(partition, block) [cached]

File VO

= read/write(file, block)

File system
= manage directories, free space

15-410, S"10



File System Layers

Multi-filesystem namespace
= Partitioning, names for devices
= Mounting
= Unifying multiple file system {ypes
= UFS, ext2fs, ext3fs, zfs, FAT, 9660, ...

15-410, S"10



Shredding Disks

Split disk into partitions/slices/minidisks/...
- MBR (PC): 4 “partitions” — Windows, FreeBSD, Plan 9, ...
- APM (Mac): “volumes” — can split: 0S 9, OS X, user files
- GPT (new, multi-platform) - many partitions, long names

Or: glue disks together into volumesflogical disks

A partition (of a disk or of a volume) may contain...
- Paging area
- Indexed by in-memory structures
- “random garbage” when OS shuts down

- File system
 Block allocation: file # = block list

e Directory: name = file #

15-410, S"10



Shredding Disks

# fdisk -s

/dev/ad0: 993 cyl 128 hd 63 sec

Part Start Size Type Flags
1: 63 1233729 0x06 0x00
2: 1233792 6773760 Oxa5 0x80

(A 4-gigabyte disk)

15-410, S"10



Shredding Disks

8 partitions:

# size offset fstype

a: 131072 0 4.2BSD 2048 16384

b: 393216 131072 swap

c: 6773760 0] unused 0] 0]

e: 65536 524288 4.2BSD 2048 16384

f: 6183936 589824 4.2BSD 2048 16384
Filesystem 1K-blocks Used Avail Capacity
/dev/ad0s2a 64462 55928 3378 94%
/dev/ad0s2f 3043806 2608458 191844 93%
/dev/ad0Os2e 32206 7496 22134 25%
procfs 4 4 0 100%

(FreeBSD 4.7 on ThinkPad 560X)

[fsize bsize bps/cpg]

101 #

104
89

H= H= H= FF

Mounted
/

/usr
/var

/proc

(Cyl.
(Cyl.
(Cyl.
(Cyl.
(Cyl.

on

0 - 16%)
16%- 65%)
0 - 839)
65%- 73%)
73%- 839%)

15-410, S"10



Disk Structures

Boot area (first block/track/cylinder)
= Interpreted by hardware bootstrap (“BIOS”)
= May include partition table

File system control block
= Key parameters: #blocks, metadata layout
= Unix: “superblock”

“File control block” (Unix: “inode”)
= ownership/permissions
= data location

Possibly a free-space map as well

15-410, S"10



10

Memory Structures

In-memory partition tables
= Sanity check file system /O fits in correct partition

Cached directory information

System-wide open-file table
= In-memory file control blocks

Process open-file tables
= Open mode (read/write/appendy/...)
= “Cursor” (read/write position)

15-410, S"10



11

VFS layer

Goals

= Allow one machine to use multiple file system fypes
= Unix FFS
= MS-DOS FAT
= CD-ROM ISO9660
= Remote/distributed: NFS/AFS

= Standard system calls should work transparently

Solution?

15-410, S"10



12

VFS layer

Goals

= Allow one machine to use multiple file system fypes
= Unix FFS
= MS-DOS FAT
= CD-ROM ISO9660
= Remote/distributed: NFS/AFS

= Standard system calls should work transparently

Solution
= Insert a level of indirection!

15-410, S"10



13

Single File System

15-410, S"10



14

VFS “Virtualization”

s read() | procfs_read()

s looki() | procfs_domem()

15-410, S"10



15

VFS layer — file system operations

These operate on file systems, not individual files

struct vfsops {

char *name;

int
int
int
int

(*vE£s_mount) () ;
(*vEs_statfs) ()’
(*vEs_vget) ()’
(*vf£s_unmount) () ;

15-410, S"10



VFS layer — file operations

Each VFS provides an array of per-file methods
= VOP_LOOKUP(vnode, new_vnode, name)
= VOP_CREATE(vnode, new_vnode, name, attributes)
= VOP_OPEN(vnode, mode, credentials, process)
= VOP_READ(vnode, uio, readwrite, credentials)

Operating system provides fs-independent code
= Validating system call parameters
= Moving data from/to user memory
= Thread sleep/wakeup

= Caches (data blocks, name = vnode mappings)

16 15-410, S'10



17

Directories

Old: one namei() = VFS: fs-provided vnode method
= vhode2 = VOP_LOOKUP(vnode1, name)

Traditional Unix FFS directories
= List of (hame,inode #) - not sorted!
= Names are variable-length
= Lookup is linear
= How long does it take to delete N files?

Common alternative: hash-table directories

15-410, S"10



18

Allocation / Mapping

Allocation problem

= Where do | put the next block of this file?
= “Near the previous block” is not a bad idea
= Beyond that, it gets complicated

Mapping problem
= Where was block 32 of this file previously put?
= Similar to virtual memory
= Multiple large “address spaces” specific to each file

= Only one underlying “address space” of blocks
= Source address space may be sparse!

15-410, S"10



19

Allocation / Mapping

Contiguous
Linked
FAT

Indexed
Linked
Multi-level
Unix (index tree)

15-410, S"10



20

Allocation — Contiguous

Approach

= File location defined as (start, length)

Motivation
= Sequential disk accesses are cheap
= Bookkeeping is easy

Issues

= Dynamic storage allocation (fragmentation, compaction)
= Must pre-declare file size at creation
= This should sound familiar

15-410, S"10



21

Allocation — Linked

Approach
= File location defined as (start)
= Each disk block contains pointer to next block

Motivation
= Avoids fragmentation problems
= Allows file growth

Issues?

15-410, S"10



22

Allocation — Linked

Issues
= 508-byte blocks don't match memory pages
= In general, one seek per block read/written - slow!

= Very hard to access file blocks at random
- Iseek(fd, 37 * 1024, SEEK_SET);

Benefit
= Can recover files even if directories destroyed

Common modification
= Link multi-block clusters, not blocks

15-410, S"10



23

Allocation — FAT

Used by MS-DOS, 0S/2, Windows

= Digital cameras, GPS receivers, printers, PaimOS, ...

Semantically same as linked allocation

But next-block links stored “out of band” in a table
= Result: nice 512-byte sectors for data

Table at start of disk

= Next-block pointer array
= Indexed by block number
= Next=0 means “free”

15-410, S"10



24

Allocation — FAT

15-410, S'10



25

Allocation - FAT

15-410, S'10



26

Allocation - FAT

15-410, S"10



Allocation - FAT

hello.jav: 0,

15-410, S"10



28

Allocation — FAT

Issues

= Damage to FAT scrambles entire file system
= Solution: mirror the FAT

Generally two seeks per block read/write
= Seek to FAT, read, seek to actual block (repeat)
= Unless FAT can be cached well in RAM

Still somewhat hard to access random file blocks
= Linear time to walk through FAT

FAT may be a “hot spot” (everybody needs to access it)

Lots of FAT updates (near beginning of disk)
= Even if files being modified are far away

15-410, S"10



29

Allocation — Indexed

Motivation

= Avoid fragmentation
problems

= Allow file growth
= Improve random access

Approach
Per-file block array

= File block number
indexes into table, yields
disk block number

= No O(n) sequential steps

15-410, S"10



30

Allocation — Indexed

Allows “holes”
= foo.c is sequential

= foo.db, blocks 1.3 = -1
= logically “blank”

“sparse allocation”
= a.k.a. “holes”
= read() returns nulls
= write() requires alloc
= file “size” # file “size”
= 1s -1 index of last byte
= 1s -s number of blocks

Uﬂ

15-410, S"10



31

Allocation — Indexed

How big should index block be?
= Too small: limits file size
= Too big: lots of wasted pointers

Combining index blocks
= Linked
= Multi-level
= What Unix actually does

15-410, S"10



32

Linked Index Blocks

Last pointer indicates
next index block

Simple

Access is not-so-random
= O(n/c) is still O(n)
= O(n) disk transfers

15-410, S"10



33

Multi-Level Index Blocks

Index blocks of indeXx
blocks

Does this look familiar?
Allows big holes

15-410, S"10



34

Unix Index Blocks

Intuition

= Many files are small
= Length =0, length =1, length < 80, ...
= Some files are huge (gigabytes... maybe terabytes!)

How do we solve this problem?
= We are computer scientists!

15-410, S"10



35

Unix Index Blocks

Intuition

= Many files are small
= Length =0, length =1, length < 80, ...
= Some files are huge (gigabytes... maybe terabytes!)

How do we solve this problem?

= We are computer scientists!
= S0 we realize when 57 levels of indirection would be slow!!!

15-410, S"10



Unix Index Blocks

Intuition
= Many files are small
= Length =0, length =1, length < 80, ...
= Some files are huge (gigabytes... maybe terabytes!)

“Clever heuristic” in Unix FFS inode

= inode struct contains 12 “direct” block pointers
= 12 block numbers * 8 KB/block = 96 KB
= Availability is “free” - must read inode to open() file anyway

= inode struct also contains 3 indirect block pointers
= single-indirect, double-indirect, triple-indirect

36 15-410, S'10



37

Unix Index Blocks

15

16

19 21

25

20 22

17

1000

o
500
1000 —p

26

27

28

29

30

31

32

15-410, S"10



Summary

Block-mapping problem
= Similar to virtual-to-physical mapping for memory

= Large, often-sparse “address” spaces
= “Holes” not the common case, but not impossible

= Map any “logical address” to any “physical address”
= Key difference: file maps often don't fit in memory

“Insert a level of indirection”
= Multiple file system types on one machine
= Grow your block-allocation map

38 15-410, S'10



39

Unix Index Blocks

" Direct” block #s
File stored at 15..18

—|Ndirect pointer

) O Uble-indirect

—ee T riple-indirect

15-410, S"10



40

Unix Index Blocks

19
20

15-410, S"10



41

Unix Index Blocks

-1

-

15 19 21
16 20 22
17
23
24

15-410, S"10



42

Unix Index Blocks

=

501 =

502 -I

Triple indirect can address >> 232 bytes

1000y

21 25
22 26
23 27
28

29

30

31

1106 " 32

15-410, S"10



43

Tracking Free Space

Bit-vector

1 bit per block: boolean “free”
Check each word vs. 0

Use “first bit set” instruction

Text example
= 1.3 GB disk, 512 B sectors: 332 KB bit vector

Need to keep (much of) it in RAM

15-410, S"10



Tracking Free Space

Linked list?

= Superblock points to first free block
= Each free block points to next

Cost to allocate N blocks is linear

= Free block can point to multiple free blocks
= 512 bytes = 128 (4-byte) block numbers

= FAT approach provides free-block list “for free”

Keep free-extent lists
= (block,sequential-block-count)

o

15-410, S"10



45

Unified Buffer Cache

Traditional two-cache approach

= Page cache, file-system cache often totally independent
= Page cache chunks according to hardware page size
= File cache chunks according to “file system block” size
= Different code, different RAM pools

= How much RAM to devote to each one?

Observation

= Why not have just one cache?
= Mix automatically varies according to load
» ‘“‘cc” wants more disk cache
» Firefox wants more VM cache

15-410, S"10



46

Unified Buffer Cache - Warning!

“Virtual memory architecture in SunOS”
Gingell, Moran, & Shannon

USENIX 1987 Summer Conference

“The work has consumed approximately four man-years of
effort over a year and a half of real time. A surprisingly large
amount of effort has been drained by efforts to interpose the
VM system as the logical cache manager for the file
systems...”

15-410, S"10



47

Cache tricks

Read-ahead
for (i = 0; 1 < filesize; ++1i)
putc (getc(infile), outfile);

= System observes sequential reads
= File block 0, 1, 2, ...
= Can pipeline reads to overlap “computation”, read latency
» Request for block 2 triggers disk read of block 3

Free-behind / replace-behind
= Discard buffer from cache when next is requested

= Good for large files
= “Anti-LRU” (evict “MRU” instead of “LRU”)

15-410, S"10



48

Recovery

System crash...now what?
= Some RAM contents were lost
= Free-space list on disk may be wrong

= Scan file system
= Check invariants
» Unreferenced files
» Double-allocated blocks
» Unallocated blocks
= Fix problems
» Expert user???

Modern approach

= “Journal” changes (see upcoming Transactions lecture)

15-410, S"10



49

Backups

Incremental “Towers of Hanoi” approach - traditional
= Monthly: dump entire file system
= Weekly: dump changes since last monthly
= Daily: dump changes since last weekly

= Restore a file?
= Most-recent “monthly” tape definitely has a copy
» May be stale, so...
= Any one of the “weekly” tapes might have a copy (scan all)
= Any one of the “daily” tapes might have a copy (scan all)

15-410, S"10



50

Backups

Merge approach (“TiBS”) - www.teradactyl.com

Something special about tape drives

They run much faster when they're “streaming”
(continuous full speed, no start/stop)

Collect changes since yesterday
= Scan file system by modification time

“Output” tape drive has a blank tape

“Input” tape drive streams yesterday's dump in
= Some files are un-changed: stream to output tape
= Some files are stale: replace them in output stream

Keep as many tapes as you want to, recycle the rest
Restoring is fast (stream one tape onto disks)
Files stored (very) redundantly — good for reliability

15-410, S"10



51

Backups

Snapshot approach
= At midnight, stop writing into file system
= New writes go into a new file system
= Mostly pointers to yesterday's data
= Changes stored in the live file system
» Maybe entire files (copy-on-write)
» Maybe just new data blocks

= Great for users
= Old snapshots can be mounted (read-only)
= Accidentally delete a file? Get it from yesterday!
= AFS supports a simple version (see “OldFiles”)

15-410, S"10



Summary

Block-mapping problem
= Similar to virtual-to-physical mapping for memory

= Large, often-sparse “address” spaces
= “Holes” not the common case, but not impossible

= Map any “logical address” to any “physical address”
= Key difference: file maps often don't fit in memory

“Insert a level of indirection”
= Multiple file system types on one machine
= Grow your block-allocation map

52 15-410, S'10



53

Further Reading

Journaling

= Prabhakaran et al., Analysis and Evolution of Journaling
File Systems (USENIX 2005)

Something cool which isn't journaling

= McKusick & Ganger: “Soft Updates: A Technique for
Eliminating Most Synchronous Writes in the Fast
Filesystem” (USENIX 1999)

Both papers appear in the “filesystem reliability”
book report paper track

15-410, S"10



