15-410

“...The mysterious TLB...”

Virtual Memory #2
Feb. 20, 2012

Dave Eckhardt

L16_VM2 15-410, $'12



Last Time

Mapping problem: logical vs. physical addresses
Contiguous memory mapping (base, limit)
Swapping - taking turns in memory

Paging

= Array mapping page numbers to frame numbers
= Observation: typical table is sparsely occupied
= Response: some sparse data structure (e.g., 2-level array)

15-410, S"12



Swapping

Multiple user processes
= Sum of memory demands > system memory
= Goal: Allow each process 100% of system memory

Take turns
= Temporarily evict process(es) to disk
= “Swap daemon” shuffles process in & out
= Can take seconds per process
= Creates external fragmentation problem

15-410, S'"12



External Fragmentation (“Holes™)

15-410, S"12




Benefits of Paging

Process growth problem
= Any process can use any free frame for any purpose

Fragmentation compaction problem
= Process doesn't need to be contiguous

Long delay to swap a whole process
= Swap part of the process instead!

15-410, S"12



Partial Residence

15-410, S"12



Page Table Entry (PTE) flags

Valid/Present bit — set by OS

= Frame pointer is valid, no need to fault

Protection bits — set by OS
= Read/write/execute
Dirty bit
= Hardware sets 0 = 1 when data stored into page
= OS sets 1 = 0 when page has been written to disk

Reference bit

= Hardware sets 0 = 1 on any data access to page
= OS uses for page eviction (later)

15-410, S"12



Outline

The mysterious TLB
Partial memory residence (demand paging) in action
The task of the page fault handler

15-410, S"12



Double Trouble? Triple Trouble?

Program requests memory access

Processor makes iwo memory accesses!

Split address into page number, intra-page offset
Add to page table base register

Fetch page table entry (PTE) from memory

Add frame address, intra-page offset

Fetch data from memory

15-410, S'"12



Double Trouble? Triple Trouble?

Program requests memory access

Processor makes iwo memory accesses!

Split address into page number, intra-page offset
Add to page table base register

Fetch page table entry (PTE) from memory

Add frame address, intra-page offset

Fetch data from memory

Can be worse than that...

= X86 Page-Directory/Page-Table
= Three physical accesses per virtual access!

= X86-64 has a four-level page-mapping system

10 15-410, S'"12



Translation Lookaside Buffer (TLB)

Problem
= Cannot afford double/triple/... memory latency

Observation - “locality of reference”

= Program often accesses “nearby” memory
= Next instruction often on same page as current instruction
= Next byte of string often on same page as current byte
= (“Array good, linked list bad”)

Solution

= Page-map hardware caches virtual-to-physical mappings
= Small, fast on-chip memory
= “Free” in comparison to slow off-chip memory

11 15-410, S'12



12

Simplest Possible TLB

Approach

= Remember the most-recent virtual-to-physical translation
= (obtained from, e.g., Page Directory + Page Table)
= See if next memory access is to same page
= If so, skip PD/PT memory traffic; use same frame
= 3X speedup, cost is two 20-bit registers
» “Great work if you can get it”

15-410, S"12



Simplest Possible TLB

Page
Directory

Page
Tables

13 15-410, S'12



Simplest Possible TLB

Page
Directory

Page
Tables

14 15-410, S'12



Simplest Possible TLB

Page
Directory

Page
Tables

15 15-410, S'12



TLB “Hit”

16

Page
Directory

Page
Tables

15-410, S"12



TLB “Miss”

17

Page
Directory

Page
Tables

15-410, S"12



TLB “Refill”

Page
Directory

Page
Tables

18 15-410, S'12



19

Simplest Possible TLB

Can you think of a “pathological” instruction?
= What would it take to “break” a 1-entry TLB?

How many TLB entries do we need, anyway?

15-410, S"12



20

TLB vs. Context Switch

After we've been running a while...
= ...the TLB is “hot” - full of page = frame translations

Interrupt!
= Some device is done...
= ...Should switch to some other task...

= ...what are the parts of context switch, again?

= General-purpose registers
= L2

15-410, S"12



21

TLB vs. Context Switch

After we've been running a while...
= ...the TLB is “hot” - full of page = frame translations

Interrupt!
= Some device is done...
= ...Should switch to some other task...

= ...what are the parts of context switch, again?
= General-purpose registers

= Page Table Base Register
= .72

15-410, S"12



22

TLB vs. Context Switch

After we've been running a while...
= ...the TLB is “hot” - full of page = frame translations

Interrupt!
= Some device is done...
= ...Should switch to some other task...

= ...what are the parts of context switch, again?
= General-purpose registers
= Page Table Base Register
= Entire contents of TLB!!

» (Why?)

15-410, S"12



23

x86 TLB Flush

1. Declare new page directory (set %cr3)

= Clears every entry in TLB (whoosh!)
= Footnote: doesn't clear “global” pages...
» Which pages might be “global”?

2. INVLPG instruction

= Invalidates TLB entry of one specific page
= |s that more efficient or less?

15-410, S"12



x86 Type Theory — Final Version

Instruction = segment selector
= [PUSHL specifies selector in %SS]

Process = (selector = (base,limit) )
= [Global,Local Descriptor Tables]

Segment base, address = linear address

TLB: linear address = physical address, or...
Process = (linear address high = page table)

Page Table: linear address middle = frame address
Memory: frame address, offset = ...

N4 15-410, S'12



25

Is there another way?

That seems really complicated

= |s that hardware monster really optimal for every OS and
program mix?

= “The only way to win is not to play?”

Is there another way?
= Could we have no page tables?
= How would the hardware map virtual to physical???

15-410, S'"12



26

Software-loaded TLBs

Reasoning
= We need a TLB “for performance reasons”

= OS defines each process's memory structure
= Which memory regions, permissions
= Lots of processes share frames of /bin/bash!

= Hardware page-mapping unit imposes its own ideas
= Why impose a semantic middie-man?

Approach
= OS knows all mappings for an address space
= TLB contains a subset of them
= TLB miss generates an exception

= OS quickly fills in correct v=p mapping

15-410, S"12



Software TLB features

Mapping entries can be computed many ways

= Imagine a system with one process memory size
= TLB miss becomes a matter of arithmetic

Mapping entries can be “locked” in TLB
= Good idea to lock the TLB-miss handler's TLB entry...
= Great for real-time systems

Further reading
= http://yarchive.net/comp/software_tlb.htmi

Software TLBs
= PowerPC 603, 400-series (but NOT 7xx/9xx, Cell)
= MIPS, some SPARC

7] 15-410, S'12



TLB vs. Project 3

x86 has a nice, automatic TLB
= Hardware page-mapper fills it for you
= Activating new page directory flushes TLB automatically
= What could be easier?

It's not totally automatic
= Something “natural” in your kernel may confuse it...

TLB debugging in Simics (you will need this!)
= logical-to-physical (I12p) command
= cpu0_tlb.info, cpu0 _tlb.status, cpuO.tablewalk
= More bits “trying to tell you something”

= [INVLPG issues with Simics 1. Simics 2, 3, 4 seem ok]

28 15-410, S'12



29

Partial Memory Residence

Error-handling code not used by every run

= No need for it to occupy memory for entire duration...

Tables may be allocated larger than used
player players[MAX PLAYERS];

Computer can run very large programs
= Much larger than physical memory
= As long as “active” footprint fits in RAM
= Swapping can't do this

Programs can launch faster
= Needn't load whole program before running

15-410, S"12



30

“Virtual Memory Approach”

Use RAM frames as a cache for the set of all pages
= Some pages are fast to access (in a RAM frame)
= Some pages are slow to access (in a disk “frame”)

Page tables indicate which pages are “resident”

= Non-resident pages are missing from the TLB

= And have “present=0” in page table entry, if we have a
hardware page-mapping unit
= Access to a non-resident page generates a page fault
= Hardware invokes page-fault exception handler

Hopefully “most” references hit in the RAM cache

15-410, S"12



Page fault — Reasons, Responses

Address is invalid/illegal — deliver software exception
= Unix — SIGSEGV
= Mach — deliver message to thread's exception port
= 15-410 — swexn handler, or else Kkill thread

Process is growing stack — give it a new frame

“Cache misses” - fetch from disk
= Where on disk, exactly?

31 15-410, S'12



32

Satisfying Page Faults

stack

III Free-frame pool

15-410, S"12



33

Page fault story - 1

Process issues memory reference
= TLB: miss
= (PT: “not present”)

Surprise! Into the kernel...
= Processor dumps exception frame onto kernel stack (x86)
= Transfers via “page fault” interrupt descriptor table entry
= Runs exception handler

15-410, S"12



34

Page fault story — 2

Classify fault address
= lllegal address = deliver an ouch, else...

Code/rodata region of executable?
= Determine which sector of executable file
= Launch read() from file into an unused frame

Previously resident r/w data, paged out
= “somewhere on the paging partition”
= Queue disk read into an unused frame

First use of hss/stack page
= Allocate a frame full of zeroes, insert into PT

15-410, S"12



35

Page fault story — 3

Block the process (for most cases)
= Switch to running another

Handle /O-complete interrupt
= Fill in PTE (present =1)
= Mark process runnable

Restore registers, switch page table
= Faulting instruction re-started transparently
= Single instruction may fault more than once!

15-410, S'"12



36

Memory Regions vs. Page Tables

What's a poor page fault handler to do?
= Kill process?
= Copy page, mark read-write?
= Fetch page from file? Which? Where?

Page table not a good data structure
= Format defined by hardware
= Per-page nature is repetitive

= Not enough bits to encode OS metadata
= Disk sector address can be > 32 bits

15-410, S"12



37

Dual-view Memory Model

Logical
= Process memory is a list of regions
= “Holes” between regions are illegal addresses

= Per-region methods
= fault(), evict(), unmap()

Physical
= Process memory is a list of pages
= Faults delegated to per-region methods

= Many “invalid” pages can be made valid
= But sometimes a region fault handler returns “error”
» Handle as with “hole” case above

15-410, S'"12



38

Page-fault story (for real)

Examine fault address
Look up: address = region

region->fault(addr, access mode)

= Quickly fix up problem
= Or start fix, block process, run scheduler

15-410, S"12



39

Summary

The mysterious TLB

= No longer mysterious

Process address space
= Logical: list of regions
= Hardware: list of pages

Fault handler is complicated
= Demand-load from file, page in from paging area, ...

15-410, S"12



