15-410

“..Goals: Time Travel, Parallel Universes...”’

Version Control
Feb. 8, 2012

Dave Eckhardt
Nathaniel Filardo
Zach Anderson (S '03)

Lllb Version 15-410, S"12

Disclaimer

This lecture will mention one SCMS
- git

You don't need to use git
- Not even if “all the TA's do”

15-410, S"12

Outline

Motivation

Repository vs. Working Directory
Conflicts and Merging

Branching

A Brief Introduction to git

15-410, S"12

Goals

Working together should be easy

Time travel
- Useful for challenging patents

- Very useful for reverting from a
sleepless hack session

Parallel universes
- Experimental universes

- Product-support universes

15-410, S"12

Goal: Shared Workspace

Reduce development latency via parallelism
- [But: Brooks, Mythical Man-Month]

Alice Bob

awesome.cC

Charlie Devon

15-410, S"12

Goal: Time Travel

Retrieving old versions should be easy.

Once Upon A Time...
Alice: What happened to the code? It doesn’t work.
Charlie: Oh, | made some changes. My code is 1337!

Alice: Rawr! | want the code from last Tuesday!

15-410, S"12

Goal: Parallel Universes

Safe process for implementing new features.
- Develop bell in one universe
- Develop whistle in another
- Don't inflict B's core dumps on W

- Eventually produce bell-and-whistle
release

15-410, S"12

How?

Keep a global repository for the project.

15-410, S'"12

The Repository

Version / Revision / Configuration

- Contents of some files at a particular point in
time
- aka “Snapshot”

Project

- A “sequence” of versions
« (not really)

Repository
- Directory where projects are stored

15-410, S"12

The Repository

Stored in group-accessible location
- Old way: file system
- Modern way: “repository server”
Versions in repository visible group-wide
- Whoever has read access
- “Commit access” often separate

10 15-410, S'12

11

How?

Keep a global repository for the project.
Each user keeps a working directory.

15-410, S'"12

12

The Working Directory

Many names (“sandbox”)

Where revisions happen

Typically belongs to one user

Versions are checked out to here

New versions are checked in from here

15-410, S'"12

13

How?

Keep a global repository for the project.
Each user keeps a working directory.
Concepts of checking out, and checking in

15-410, S'"12

14

Checking Out. Checking In.

Checking out
- A version is copied from the repository
 Typically “Check out the latest”
« Or: “Revision 3.1.4”, “Yesterday noon”

Work

- Edit, add, remove, rename files

Checking in
- Working directory = repository atomically
- Result: new version

15-410, S"12

15

Checking Out. Checking In.

Repository Working Directory

©)
©)
@)

15-410, S"12

16

Checking Out. Checking In.

Repository Working Directory

©)
©)
@)

15-410, S"12

17

Checking Out. Checking In.

Repository Working Directory

©)
©)
@)

-'W-

o
o
o

15-410, S"12

18

How?

Keep a global repository for the project.
Each user keeps a working directory.
Concepts of checking out, and checking in
Mechanisms for merging

15-410, S'"12

19

Conflicts and Merging

Two people check out.
- Both modify foo.c

Each wants to check in a new version.
- Whose is the correct new version?

15-410, S"12

20

Conflicts and Merging

Conflict
- Independent changes which “overlap”

- Textual overlap detected by revision
control

- Semantic conflict cannot be
Merge displays conflicting updates per file

Pick which code goes into the new version
- A, B, NOTA

Story now, real-life example later

15-410, S"12

21

Alice Begins Work

Alice Repository

E Al

y

Bob

15-410, S"12

22

Bob Arrives, Checks Out

Alice Repository Bob

K Rl

y

15-410, S"12

23

Alice Commits, Bob Has Coffee

Alice Repository Bob
L

oh = 0s

15-410, S"12

Bob Fixes Something Too
Alice Repository Bob

E el
oh = 0s

:
y

24 15-410, S'12

25

Wrong Outcome
Alice Repository Bob

K Rl

v |

ey

15-410, S"12

“Arguably Less Wrong”

Alice Repository Bob

E el
oh = 0s
_

26 15-410, S'12

27

Merge, Bob, Merge!

Alice Repository Bob

K Rl

=

V

15-410, S"12

Committing Genuine Progress
Alice Repository Bob

K Rl

i N

V

15-410, S"12

29

How?

Keep a global repository for the project.
Each user keeps a working directory.
Concepts of checking out, and checking in
Mechanisms for merging

Mechanisms for branching

15-410, S'"12

Branching

A branch is a sequence of versions
- (not really...)

Changes on one branch don't affect others
Project may contain many branches
Why branch?

- Implement a new “major” feature

- Begin a temporary independent sequence of
development

30 15-410, S'12

31

Branching

@)
@)
@)

v0.3 [hranch Jyi
v(0.37 v142
c O | merge
!
v1.43

The actual branching
and merging take
place 1n a particular
user's working
directory, but this 1s
what such a sequence
would look like to
the repository.

15-410, S"12

32

Branch Life Cycle

“The Trunk”
- “Release 1.0”, “Release 2.0, ...

Release 1.0 maintenance branch
- After 1.0: 1.0.1,1.0.2, ...

- Bug-fix updates as long as 1.0 has users

Internal development branches
-11.1,1.1.2, ...
- Probably 1.1.1.client, 1.1.1.server

15-410, S'"12

33

Branch Life Cycle

“Development excursion” branch model
- Create branch to fix bug #99 in vi.1
- One or more people make 7 changes

- Branch “collapses” back to trunk
« Merge 1.1.bug99.7 against 1.1.12
e Result: 1.1.13
« There will be no 1.1.bug99.8

* In some systems, there can't be

15-410, S"12

34

Branch Life Cycle

“Controlled isolation” branch model

- Server people work on 1.3.server

e Fix server code

 Run stable client test suite vs. new server
- Client people work on 1.3.client

e Fix client code

« Run new client test suite vs. stable server
- Note

- Branches do not collapse after one merge!

15-410, S"12

35

Branch Life Cycle

“Controlled isolation” branch model
- Periodic merges - example
e 1.3.server.45, 1.3.12 = 1.3.13

« 1.3.client.112, 1.3.13 = 1.3.14

« Each group can keep working while one
person “pushes up” a version to the parent

- When should server team “pull down”
1.3.14 changes?

- 1.3.server.47, 1.3.14 = 1.3.server.48?
- 1.3.server.99, 1.3.14 = 1.3.server.100?

15-410, S"12

36

Branch Life Cycle

Successful development branch
- Merged back to parent
- No further versions

Unsuccessful development branch
- Some changes pulled out?
- No further versions

Maintenance branch
- “End of Life”’: No further versions

15-410, S"12

Are Branches Deleted?

Consider the repository “data structure”
- Revisions of each file (coded as deltas)
- Revisions of the directory tree

Branch delete
- Complicated data structure update
» [Not a well-tested code path]

- Generally a bad idea
« History could always be useful later...

37 15-410, S'12

Source Control Opinions

CvS

- still widely used
- mature, lots of features

- default behavior often
wrong

SubVersion (svn)
- SVN > CVS (design)
- SVN > CVS (size)
- Doesn't work in AFS
- Yes, it does
- No, it doesn't?

38

Perforce
- commercial
- reasonable design
- works well (big server)

BitKeeper
- Favored-by-Linus
Forvalds
- “Special” license
restrictions

git

- Favored by Linus
Torvalds

15-410, S"12

Source Control Opinions
Others

Mercurial (“hg”)

« Mostly-merge-once branches

« Design is similar to git (mutual feature cloning)

- More Python, less C, smaller user community

Bazaar (“bzr”)
Monotone
arch/tla
darcs (“patch algebra”)

Generally

39

Promising plans

Some rough edges
Many use cases covered
Ready yet?

15-410, S"12

Eckhardt's Raves

CVS

- Commit: atomic if you are careful

- Named snapshots: if you are careful

- Branching: works if you are careful

- Core operations require care & expertise!!!

Many commercial products

- Require full-time person, huge machine
- Punitive click-click-click GUI

- Poor understanding of data structure
requirements

40 15-410, S'12

41

Recommendation for 15-410

You can use CVS if you're used to it
- But you probably shouldn't
- Better: SVN, hg, darcs, ...

Current TA favorite: git
- It can do what you need
o (plus a vast array of things you don't need)

- It's unlikely to suddenly vanish

- It's “very likely” (25%7?) to be chosen by your
next boss

15-410, S"12

42

Getting Started

Already installed on Andrew Linux systems!

Or you can install it yourself on your own.
- (“Some assembly required”)

Git is a “distributed” source-control system
- 222

15-410, S"12

Traditional “File System” Model

SCCS
CVS
SVN

43 15-410, S'12

“East-Coast / West-Coast” Model

- .

\R-R protocol/

Inter-repository protocol runs “sometimes”.
Conflicts are tricky.
Perforce does this.

44 15-410, S'12

Laptop Model!

R-R protocol

V laptop
Sandbox-repository protocol.

Also, inter-repository protocol.

More protocols == more fun?

45

15-410, S'"12

“Distributed Version Control”

R-R protocol

Repository holds current files and metadata.
Inter-repository protocol is tricky (no “before™).
Whose laptop do we release to customers from??

hg, git
darcs
46 15-410, S'12

“The Repository”

47

15-410, S"12

48

Creating A New Project

Anywhere, but safest in a blank directory:
$ git init
Creates a “.git” subdirectory

= Contains a hash-tree of all entities ever
seen by the version control system.

= Also contains things like config, heads,
remotes, and other goodies.

15-410, S"12

49

Populating the world

Adding Files
$ git add filel file2 ...

- To add every file in a directory
$ git add dir/
« Rarely what you want!!!

These are “staged” operations...
- “Add” requires a commit just like “edit” does.

15-410, S"12

Checking In

Commit Yourself!
$ git commit -a
- Fires up your SEDITOR and asks you for
commentary.
- Can restrict which files on the command line,
or even use --interactive.

- Adds a new snapshot to LOCAL repository's
history
- Your partner has no idea that this has

happened.

50 15-410, S'12

51

Sharing Your Work

How do changes become non-local?

Pull
$ git pull [remote-path/URL]
- Pulls changes from a remote repository.
- Git has a notion of “default remote”

Push
$ git push [remote-path/URL]

- Pushes changes from the local repo into the
remote.

15-410, S"12

Checking Out A Project

Making a new checkout:

$ git clone remote-path/URL [local-name]

- Clones the remote repository

- All set for you to work in.

- The default push/pull target is the remote you
copied.

You can use this mechanism to “branch”.

- Git also supports named branches in a repo.

- See “man git-branch” or any of the other
docs.

15-410, S"12

52

53

Conflicts and Merging

Suppose this hello.c is in the repository:

#include <stdlib.h>
#include <stdio.h>

int main (void)

{
printf ("Hello World!\n") ;
return O;

15-410, S"12

Conflicts and Merging

Suppose Alice and Charlie each check out
this version, and make changes:

°] o ° °
Alice's Version Charlie's Version

#include <stdlib.h>

#include <stdlib.h>
#include <stdio.h>

#include <stdio.h>
#define SUPER O int main (VOld)
. . . {
int main (VOld) /* this , like , says

{ hello, and stuff */

/* prints "Heilo World" printf ("Hello Hercules!\n");
to stdout */ return 42;

printf ("Hello World!\n"); }
return SUPER;

54 15-410, S'12

55

Conflicts and Merging

Suppose Alice “checks in” first

$ git commit -a

$ git push
Now Charlie...

$ git commit -a

$ git push

$ git pull

$...edit...

$ git commit -a

= ok
= ok

= 0k, but invisible to Alice
fail!

= Alice's changes “appear”

|

&& git push

15-410, S"12

Merge Mutilation

There wasn't a conflict “here”

#include <stdlib.h> Conflicts are entirely textual!
#include <stdio.h>

#define SUPER 0

int main (void) “///////
{

<<<K<K<K<L<kL HEAD:hello.c
/* this, like, says hello, and stuff */

printf ("Hello Hercules!") ; e e .
return 42; Division between

======== conflicting commits
/* prints "Hellod World" to stdout */
printf ("Hello World!") ;
return SUPER;

>>>>>>>> 12341234abcd5656efef£787890900123456789%ab:hello.c

}

commit:file name

56 15-410, S'12

57

Information

To get a summary of changes:
$ git status

To ask about changes in the past:
$ git log

15-410, S"12

58

Suggestions

“Commit early and often”
- So you can locally track history, roll back...

“Push good news”
- Build, test, push to shared space

“Pull often”
- Big merges are painful merges

Develop a convention for commit entries
- Type of revision (bug-fix, commenting, etc.)
- Meaningful, short descriptions

15-410, S"12

Suggestions

“Backups”
- “push” and “pull” do a lot

- Snapshotting your central repository every
now and then may be smart

When to branch?
- Bug fixing?
« Check out, fix, check in to same branch
- Trying COW fork since regular fork works?
« Branching probably a good idea.

- For “backed up but not released to partner”

59 15-410, S'12

60

Summary

We can now:
- Create projects
- Check source in/out
- Merge, and
- Branch
See GIT documentation
- 15-410 “git intro” web page — specific help
- Lots of documentation online (many features)
- Search for “git tutorial”

15-410, S"12

61

Further Reading

“Git for Computer Scientists”
“Git from the Bottom Up”
“Git Magic”

“How to use git to lose data”

15-410, S"12

