
15-410, s'121

#include
Feb. 3, 2012

Dave EckhardtDave Eckhardt

L09a_include

15-410
“...#ifndef DSFLK_FSFDDS_FSDFDS...”

15-410, s'122

Outline

#ifndef DSFLK_FSFDDS_FSDFDS#ifndef DSFLK_FSFDDS_FSDFDS

15-410, s'123

What's _STDIO_H_ anyway?

#ifndef _STDIO_H_
#define _STDIO_H_

typedef struct FILE {
 ...
} ...;

#endif /* _STDIO_H_ */

15-410, s'124

Archaeology

C is oldC is old

C doesn't have modulesC doesn't have modules

C has C has compilation unitscompilation units
 “Compilation unit” is the secret ANSI code word for “file”
 Compilers sort of know some file types: .c, .s
 Compilers don't really know about .h

● Auxiliary “pre-processor” brain (/lib/cpp) hides them

People use People use conventionsconventions to get module-like C to get module-like C
 These conventions evolved slowly

15-410, s'125

The “.h Responsibility” Dilemma

Assume: “stdio module”Assume: “stdio module”

Assume: “network stack module”Assume: “network stack module”
 (Trust us, it's modular!)

Both need to knowBoth need to know
 What's a size_t on this machine, anyway?
 #include <sys/types.h>

15-410, s'126

Nested Responsibility

Program 1:Program 1:
 #include <stdio.h>

Program 2:Program 2:
 #include <netinet/tcp_var.h>

AssumeAssume
 Program 1, 2 don't need sys/types.h themselves

Solution 1Solution 1
 stdio.h and netinet/tcp_var.h each include sys/types.h

15-410, s'127

Too Much

Program 3:Program 3:
 #include <stdio.h>
 #include <netinet/tcp_var.h>

ProblemProblem
 Now we get two copies sys/types.h
 Lots of whining about redefinitions
 Maybe compilation fails

15-410, s'128

Too Much

Program 3:Program 3:
 #include <stdio.h>
 #include <netinet/tcp_var.h>

ProblemProblem
 Now we get two copies sys/types.h
 Lots of whining about redefinitions
 Maybe compilation fails

Solution?Solution?
 Blame the programmer!

15-410, s'129

Passing the Buck

Solution 2Solution 2
 Require main program to #include <sys/types.h>
 Then the other .h files don't have to

ProblemProblem
 Extra work for the programmer
 Modules' needs change over time

● Didn't you know? Since last night xxx needs yyy...

15-410, s'1210

Solution: Idempotent .h files

.h responsibility.h responsibility
 Activate only once
 No matter how many times included
 Choose string “unlikely to be used elsewhere”

#ifndef _STDIO_H_
#define _STDIO_H_
...
#endif /* _STDIO_H_ */

15-410, s'1211

What Belongs in a .h?

Types (C: Types (C: declarationsdeclarations, not , not definitionsdefinitions))

Exported interface routines (“public methods”)Exported interface routines (“public methods”)

Constants (#define or enum)Constants (#define or enum)

Macros (when Macros (when appropriateappropriate))

Data items exported by moduleData items exported by module
 Try to avoid this
 Same reason as other languages: data != semantics

No code!No code!

15-410, s'1212

But What About...?

Real modules have multiple .c filesReal modules have multiple .c files
 Who declares internal data structures?

● To be shared by multiple files
– this is legitimate: internally, we agree on semantics

 Who declares internal functions?

Not “the” .h fileNot “the” .h file
 We don't want to publish internal details

Maybe a “.i” file?Maybe a “.i” file?
 Help?

15-410, s'1213

Use the Other .h File!

stdio.hstdio.h
 Included by module clients
 Included by module parts
 Available in /usr/include when stdio is installed

stdio_private.hstdio_private.h
 Included only by module parts
 Not made available in a public location (ideally)

*_private.h should be idempotent, too*_private.h should be idempotent, too

15-410, s'1214

Summary

#ifndef DSFLK_FSFDDS_FSDFDS#ifndef DSFLK_FSFDDS_FSDFDS
 Well, use a better string
 Used to make .h files idempotent

What What shouldshould go here, anyway? go here, anyway?
 There are two “here”'s here

● foo.h: public interface, available to public
● foo_private.h: internal communication, maybe unpublished

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

