
15-410, S’121

Hardware Overview
Jan. 23, 2012

Dave EckhardtDave Eckhardt

L04_Hardware

15-410
“Computers make very fast, very accurate mistakes.”

--Brandon Long

15-410, S’122

Synchronization

Partner signupsPartner signups
 29 group signups so far – thanks!
 Please sign up as soon as you decide!

 This helps other students
 Both partners please sign up!

 This helps course staff detect “love triangles”

15-410, S’123

Synchronization

Today's classToday's class
 Not exactly Chapter 2 or 13

Project 0Project 0
 Due Wednesday at midnight
 Consider not using a late day

 Could be a valuable commodity later!
 Remember, this is a warm-up project

 Reliance on these skills will increase rapidly

UpcomingUpcoming
 Lecture on “The Process”
 Project 1

15-410, S’124

Synchronization

Personal Simics licensesPersonal Simics licenses
 Simics machine-simulator software is licensed
 We have enough “seats” for the class

 Should work on most CMU-network machines
 Will not work on most non-CMU-network

machines
 CMU operates a VPN server for off-campus users

» http://www.cmu.edu/computing/network/vpn

» There is an open-source alternative (OpenConnect)

• We don't yet know how to make it work

15-410, S’125

Synchronization

Simics on Windows?Simics on Windows?
 Simics simulator itself is available for Windows
 15-410 build/debug infrastructure is not

 Can be hacked up, issues may arise
» Version skew, partner, ...

OptionsOptions
 Dual-boot Linux/Windows, run Linux in VMware
 Usability via X depends on network latency

 May be too slow – though we are experimenting
 Port to cygwin (may be non-trivial)
 There are some cluster machines...

 WeH 5205/5207, GHC 3000, GHC 5201/5205

15-410, S’126

Outline

Computer hardwareComputer hardware

CPU StateCPU State

Fairy tales about system callsFairy tales about system calls

CPU context switch (intro)CPU context switch (intro)

Interrupt handlersInterrupt handlers

Race conditionsRace conditions

Interrupt maskingInterrupt masking

Sample hardware device – countdown timerSample hardware device – countdown timer

15-410, S’127

Inside The Box - Historical/Logical

CPU

Memory

Graphics

Ethernet

IDE

Floppy

USB

15-410, S’128

Inside The Box - 1997-2004

CPU

Memory AGP Graphics

IDE
Floppy
USB

North Bridge

South Bridge

P
C
I

Ethernet

SCSI

15-410, S’129

Inside The Box - 2004-

CPU

Memory PCIe Graphics

SATA
Floppy
USB

North Bridge

South Bridge

P
C
I
e

Ethernet

SCSI

P
C
I

15-410, S’1210

CPU State

User registers (on Planet IA32)User registers (on Planet IA32)
 General purpose - %eax, %ebx, %ecx, %edx
 Stack Pointer - %esp
 Frame Pointer - %ebp
 Mysterious String Registers - %esi, %edi

15-410, S’1211

CPU State

Non-userNon-user registers, a.k.a.... registers, a.k.a....

Processor status register(s)Processor status register(s)
 Currently running: user code / kernel code?
 Interrupts on / off
 Virtual memory on / off
 Memory model

 small, medium, large, purple, dinosaur

15-410, S’1212

CPU State

Floating point number registersFloating point number registers
 Logically part of “User registers”
 Sometimes another “special” set of registers

 Some machines don't have floating point
 Some processes don't use floating point

15-410, S’1213

Story time!

Time for some fairy talesTime for some fairy tales
 The getpid() story (shortest legal fairy tale)
 The read() story (toddler version)
 The read() story (grade-school version)

15-410, S’1214

The Story of getpid()

User process is computingUser process is computing
 User process calls getpid() library routine
 Library routine executes TRAP $314159

 In Intel-land, TRAP is called “INT” (because it
isn't one)

» REMEMBER: “INT” is not an interrupt

The world changesThe world changes
 Some registers dumped into memory somewhere
 Some registers loaded from memory somewhere

The processor has The processor has entered kernel modeentered kernel mode

15-410, S’1215

User Mode

Operating
System

Process 1

Process 2
CPU

15-410, S’1216

Entering Kernel Mode

Operating
System

Process 1

Process 2
CPU

save

15-410, S’1217

Entering Kernel Mode

Operating
System

Process 1

Process 2
CPU

Ethernet
SATA

Floppy
USB

15-410, S’1218

The Kernel Runtime Environment

Language runtimes differLanguage runtimes differ
 ML: may have no stack (“nothing but heap”)
 C: stack-based

Processor is more-or-less agnosticProcessor is more-or-less agnostic
 Some assume/mandate a stack

““Trap handler” builds kernel runtime environmentTrap handler” builds kernel runtime environment
 Depending on processor

 Switches to correct stack
 Saves registers
 Turns on virtual memory
 Flushes caches

15-410, S’1219

The Story of getpid()

Process runs in kernel modeProcess runs in kernel mode
 running->u_reg[R_EAX] = running->u_pid;

““Return from interrupt”Return from interrupt”
 Processor state restored to user mode

 (modulo %eax)

User process returns to computingUser process returns to computing
 Library routine returns %eax as value of getpid()

15-410, S’1220

Returning to User Mode

Operating
System

Process 1

Process 2
CPU

restore

15-410, S’1221

The Story of getpid()

What's the getpid() system call?What's the getpid() system call?
 C function you call to get your process ID
 “Single instruction” (INT) which modifies %eax
 Privileged code which can access OS internal state

15-410, S’1222

A Story About read()

User process is computingUser process is computing
count = read(7, buf, sizeof (buf));

User process “stops running”User process “stops running”

Operating system issues disk readOperating system issues disk read

Time passesTime passes

Operating system copies data to user bufferOperating system copies data to user buffer

User process “starts running again”User process “starts running again”

15-410, S’1223

Another Story About read()

P1: read()P1: read()
 Trap to kernel mode

Kernel: tell disk: “read sector 2781828”Kernel: tell disk: “read sector 2781828”

Kernel: switch to running P2Kernel: switch to running P2
 Return to user mode - but to P2, not P1!
 P1 is “blocked in a system call”

 P1's %eip is part-way through driver code

» (logically – we will cover reality later)
 Marked “unable to execute more instructions”

P2: compute 1/3 of Mandelbrot setP2: compute 1/3 of Mandelbrot set

15-410, S’1224

Another Story About read()

Disk: done!Disk: done!
 Asserts “interrupt request” signal
 CPU stops running P2's instructions
 Interrupts to kernel mode
 Runs “disk interrupt handler” code

Kernel: switch to P1Kernel: switch to P1
 Return from interrupt - but to P1, not P2!
 P2 is able to execute instructions, but not doing so

 P2 is not running
 But it is not “blocked”
 It is “runnable”

15-410, S’1225

Interrupt Vector Table

How should CPU handle How should CPU handle this particularthis particular interrupt? interrupt?

 Disk interrupt ⇒ invoke disk driver

 Mouse interrupt ⇒ invoke mouse driver

Need to knowNeed to know
 Where to dump registers

 Often: property of current process, not of
interrupt

 New register values to load into CPU
 Key: new program counter, new status register

» These define the new execution environment

15-410, S’1226

Interrupt Dispatch

Table lookupTable lookup
 Interrupt controller says: this is interrupt source #3
 CPU fetches table entry #3

 Table base-pointer programmed in OS startup
 Table-entry size defined by hardware

Save old processor stateSave old processor state

Modify CPU state according to table entryModify CPU state according to table entry

Start running interrupt handlerStart running interrupt handler

15-410, S’1227

Interrupt Return

““Return from interrupt” operationReturn from interrupt” operation
 Load saved processor state back into registers
 Restoring program counter reactivates “old” code
 Hardware instruction typically restores some state
 Kernel code must restore the remainder

15-410, S’1228

Example: x86/IA32

CPU saves old processor stateCPU saves old processor state
 Stored on “kernel stack” (picture follows)

CPU modifies state according to table entryCPU modifies state according to table entry
 Loads new privilege information, program counter

Interrupt handler beginsInterrupt handler begins
 Uses kernel stack for its own purposes

Interrupt handler completesInterrupt handler completes
 Empties stack back to original state
 Invokes “interrupt return” (IRET) instruction

 Registers loaded from kernel stack
 Mode switched from “kernel” to “user”

15-410, S’1229

IA32 Single-Task Mode Example

Picture: Interrupt/Exception Picture: Interrupt/Exception while in kernel modewhile in kernel mode (Project 1) (Project 1)

Hardware pushes registers on current stack, NO STACK CHANGEHardware pushes registers on current stack, NO STACK CHANGE
 EFLAGS (processor state)

 CS/EIP (return address)

 Error code (certain interrupts/faults, not others: see intel-sys.pdf)

 IRET restores state from EIP, CS, EFLAGS

From intel-sys.pdf
 (please consult!)

15-410, S’1230

Race Conditions

1. Two concurrent activities1. Two concurrent activities
 Computer program, disk drive

2. Various execution sequences produce various 2. Various execution sequences produce various
“answers”“answers”
 Disk interrupt before or after function call?

3. Execution sequence is not controlled3. Execution sequence is not controlled
 So either outcome is possible “randomly”

⇒ ⇒ System produces random “answers”System produces random “answers”

 One answer or another “wins the race”

15-410, S’1231

Race Conditions – Disk Device Driver

““Top half” wants to launch disk-I/O requestsTop half” wants to launch disk-I/O requests
 If disk is idle, send it the request
 If disk is busy, queue request for later

Interrupt handler action depends on queue statusInterrupt handler action depends on queue status

 Work in queue ⇒ transmit next request to disk

 Queue empty ⇒ let disk go idle

15-410, S’1232

Race Conditions – Disk Device Driver

““Top half” wants to launch disk-I/O requestsTop half” wants to launch disk-I/O requests
 If disk is idle, send it the request
 If disk is busy, queue request for later

Interrupt handler action depends on queue statusInterrupt handler action depends on queue status

 Work in queue ⇒ transmit next request to disk

 Queue empty ⇒ let disk go idle

Various execution orders possibleVarious execution orders possible
 Disk interrupt before or after “disk is idle” test?

System produces random “answers”System produces random “answers”

 “Work in queue ⇒ transmit next request” (good)

 “Work in queue ⇒ let disk go idle” (what??)

15-410, S’1233

Race Conditions – Driver Skeleton

dev_start(request) {
 if (device_idle) {
 device_idle = 0;
 send_device(request);
 } else {
 enqueue(request);
 }
}
dev_intr() {
 ...finish up previous request...
 if (new_request = head()) {
 send_device(new_request);
 } else
 device_idle = 1;
}

15-410, S’1234

Race Conditions – Good Case

User process Interrupt handler
if (device_idle)
/* no, so... */
enqueue(request)

INTERRUPT
...finish up...
new = 0x80102044;
send_device(new);

RETURN FROM
INTERRUPT

15-410, S’1235

Race Conditions – Bad Case

User process Interrupt handler
if (device_idle)
/* no, so... */

INTERRUPT
..finish up...

new = 0;
device_idle = 1;

RETURN FROM
INTERRUPT

enqueue(request)

15-410, S’1236

What Went Wrong?

““Top half” ran its algorithmTop half” ran its algorithm
 Examine state
 Commit to action

Interrupt handler ran Interrupt handler ran itsits algorithm algorithm
 Examine state
 Commit to action

Various outcomes possibleVarious outcomes possible
 Depends on exactly when interrupt handler runs

System produces random “answers”System produces random “answers”
 Study & avoid this in your P1!

15-410, S’1237

Interrupt Masking

Two approachesTwo approaches
 Temporarily suspend/mask/defer device

interrupt while checking and enqueueing
 Will cover further before Project 1

 Or use a lock-free data structure
 [left as an exercise for the reader]

ConsiderationsConsiderations
 Avoid blocking Avoid blocking allall interrupts interrupts

 [not a big issue for 15-410]
 Avoid blocking too longAvoid blocking too long

 Part of Project 1, Project 3 grading criteria

15-410, S’1238

Timer – Behavior

Simple behaviorSimple behavior
 Count something

 CPU cycles, bus cycles, microseconds
 When you hit a limit, signal an interrupt
 Reload counter to initial value

 Done “in background” / “in hardware”
 (Doesn't wait for software to do reload)

SummarySummary
 No “requests”, no “results”
 Steady stream of evenly-distributed interrupts

15-410, S’1239

Timer – Why?

Why interrupt a perfectly good execution?Why interrupt a perfectly good execution?

Avoid CPU hogsAvoid CPU hogs
 while (1)
 continue;

Maintain accurate time of dayMaintain accurate time of day
 Battery-backed calendar counts only seconds

(poorly)

Dual-purpose interruptDual-purpose interrupt
 Timekeeping

++ticks_since_boot;
 Avoid CPU hogs: force process switch

15-410, S’1240

Summary

Computer hardwareComputer hardware

CPU StateCPU State

Fairy tales about system callsFairy tales about system calls

CPU context switch (intro)CPU context switch (intro)

Interrupt handlersInterrupt handlers

Race conditionsRace conditions

Interrupt maskingInterrupt masking

Sample hardware device – countdown timerSample hardware device – countdown timer

