
1 15-410, S’12

Stack Discipline
Jan. 18, 2012

Dave EckhardtDave Eckhardt

Slides originally stolen from 15-213Slides originally stolen from 15-213

15-410
“An Experience Like No Other”

2 15-410, S’12

Synchronization

RegistrationRegistration
 If you're here but not registered, see me before noon
 The wait list will probably be done today or tomorrow

 If I have asked you for data, please provide it!

If you haven't taken 15-213 (A/B, malloc lab ok)If you haven't taken 15-213 (A/B, malloc lab ok)
 Contact me no later than today

Mid-Term ExamMid-Term Exam
 Two plausible days
 When I ask you to fill out the web form, please do so promptly

3 15-410, S’12

Outline

TopicsTopics
 Process memory model
 IA32 stack organization
 Register saving conventions
 Before & after main()
 Project 0

4 15-410, S’12

Why Only 32?

You may have learned x86-64 aka EMT64 aka AMD64You may have learned x86-64 aka EMT64 aka AMD64
 x86-64 is simpler than x86(-32) for user program code

 Lots of registers, registers more orthogonal

Why will 410 be x86 / IA32?Why will 410 be x86 / IA32?
 x86-64 is not simpler for kernel code

 Machine begins in 16-bit mode, then 32, finally 64

» You don't have time to write 32⇒64 transition code

» If we gave it to you, it would be a big black box

 x86-64 is not simpler during debugging
 More registers means more registers to have wrong values

 x86-64 virtual memory is a bit of a drag
 More steps than x86-32, but not more intellectually stimulating

 There are still a lot of 32-bit machines in the world
 ...which can boot and run your personal OS

5 15-410, S’12

Private Address Spaces

Each process has its own private address space.Each process has its own private address space.

kernel virtual memory
(code, data, heap, stack)

memory mapped region for
shared libraries

run-time heap
(managed by malloc)

user stack
(created at runtime)

unused
0

%esp (stack pointer)

memory
invisible to
user code

brk

0xc0000000

0x08048000

0x40000000

read/write segments
(.data, .bss)

read-only segments
(.init, .text, .rodata)

loaded from the
executable file

0xffffffff

Warning:Warning:
numbers numbers
specific to specific to
Linux 2.x Linux 2.x
on IA32!!on IA32!!

Warning:Warning:
details vary details vary
by OS and by OS and
kernel kernel
version!version!

6 15-410, S’12

Linux Memory Layout
StackStack

 Runtime stack (8MB limit by default)

HeapHeap
 Dynamically allocated storage
 Managed by malloc(), calloc(), new

Shared/Dynamic Libraries aka Shared ObjectsShared/Dynamic Libraries aka Shared Objects
 Library routines (e.g., printf(), malloc())
 Linked into object code when first executed
 Windows has “DLLs” (semantic differences)

Data, BSSData, BSS
 Statically allocated data (BSS starts all-zero)
 e.g., arrays & variables declared in code

Text, RODATAText, RODATA
 Text - Executable machine instructions
 RODATA – Read-only (e.g., “const”)

 String literals

Upper
2 hex
digits of
address

Red Hat
v. 6.2
~1920MB
memory
limit

FF

BF

7F

3F

C0

80

40

00

Stack

Shared
Libraries

Text
Data

Heap

Heap

08

7 15-410, S’12

Linux Memory Allocation

Linked

BF

7F

3F

80

40

00

Stack

Libraries

Text

Data

08

Some
Heap

BF

7F

3F

80

40

00

Stack

Libraries

Text

Data

Heap

08

More
Heap

BF

7F

3F

80

40

00

Stack

Libraries

Text

Data

Heap

Heap

08

Initially

BF

7F

3F

80

40

00

Stack

Text

Data

08

8 15-410, S’12

IA32 Stack
 Region of memory managed

with stack discipline
 “Grows” toward lower

addresses

 Register %esp indicates
lowest stack address

 address of “top” element
 stack pointer

Stack
Pointer
%esp

Stack Grows
Down

Increasing
Addresses

Stack “Top”

Stack “Bottom”

9 15-410, S’12

IA32 Stack Pushing
PushingPushing

 pushl Src

 Fetch operand from Src
 Maybe a register: %ebp
 Maybe memory: 8(%ebp)

 Decrement %esp by 4

 Store operand in memory at
address given by %esp

Stack Grows
Down

Increasing
Addresses

Stack “Top”

Stack “Bottom”

Stack
Pointer
%esp -4

10 15-410, S’12

IA32 Stack Popping
PoppingPopping

 popl Dest

 Read memory at address
given by %esp

 Increment %esp by 4

 Store into Dest operand

Stack
Pointer
%esp

Stack Grows
Down

Increasing
Addresses

Stack “Top”

Stack “Bottom”

+4

11 15-410, S’12

%esp

%eax

%edx

%esp

%eax

%edx

%esp

%eax

%edx

0x104

555

0x108

0x108

0x10c

0x110

0x104

555

213

213

123

Stack Operation Examples

0x108

0x10c

0x110

555

213

123

0x108 0x104

pushl %eax

0x108

0x10c

0x110

213

123

0x104

213

popl %edx

0x108

213

15-410, F'1112

Procedure Control Flow
 Use stack to support procedure call and return

Procedure call:Procedure call:
call label Push return address; Jump to label

““Return address”?Return address”?
 Address of instruction after call
 Example from disassembly

804854e: e8 3d 06 00 00 call 8048b90 <main>

8048553: 50 pushl %eax
 Return address = 0x8048553

Procedure return:Procedure return:
ret Pop address from stack; Jump to address

13 15-410, S’12

%esp

%eip

%esp

%eip 0x804854e

0x108

0x108

0x10c

0x110

0x104

0x804854e

0x8048553

123

Procedure Call Example

0x108

0x10c

0x110

123

0x108

call 8048b90

804854e: e8 3d 06 00 00 call 8048b90 <main>
8048553: 50 pushl %eax

0x8048b90

0x104

%eip is program counter

14 15-410, S’12

%esp

%eip

0x104

%esp

%eip 0x80485910x8048591

0x1040x104

0x108

0x10c

0x110

0x8048553

123

Procedure Return Example

0x108

0x10c

0x110

123

ret

8048591: c3 ret

0x108

%eip is program counter

0x8048553

0x8048553

15 15-410, S’12

Stack-Based Languages
Languages that support recursionLanguages that support recursion

 e.g., C, Pascal, Java
 Code must be “reentrant”

 Multiple instantiations of a single procedure “live” at same time
 Need some place to store state of each instantiation

 Arguments
 Local variables
 Return pointer (maybe)
 Weird things (static links, exception handling, …)

Stack discipline – key observationStack discipline – key observation
 State for given procedure needed for limited time

 From time of call to time of return
 Note: callee returns before caller does

Therefore stack allocated in nested Therefore stack allocated in nested framesframes
 State for single procedure instantiation

16 15-410, S’12

Call Chain Example
Code StructureCode Structure

yoo(…)
{

•
•
who();
•
•

}

who(…)
{

• • •
amI();
• • •
amI();
• • •

}

amI(…)
{

•
•
amI();
•
•

}

yoo

who

amI

amI

amI

Call Chain

 Procedure amI()
recursive

amI

17 15-410, S’12

Stack
Pointer
%esp

yoo

who

proc

Frame
Pointer
%ebp

Stack
“Top”

Stack Frames

ContentsContents
 Local variables
 Return information
 Temporary space

ManagementManagement
 Space allocated when enter

procedure
 “Set-up” code

 Deallocated when return
 “Finish” code

PointersPointers
 Stack pointer %esp indicates

stack top

 Frame pointer %ebp indicates
start of current frame

amI

18 15-410, S’12

IA32/Linux Stack Frame
Current Stack Frame (“Top” Current Stack Frame (“Top”

to “Bottom”)to “Bottom”)
 Parameters for function

we're about to call
 “Argument build”

 Local variables
 If don't all fit in registers

 Caller's saved registers
 Caller's saved frame pointer

Caller's Stack FrameCaller's Stack Frame
 Return address

 Pushed by call instruction

 Arguments for this call

Stack Pointer
(%esp)

Frame Pointer
(%ebp)

Return Addr

Saved
Registers

+
Local

Variables

Argument
Build

Old %ebp

Arguments

Caller
Frame

19 15-410, S’12

swap()

void swap(int *xp, int *yp)
{
 int t0 = *xp;
 int t1 = *yp;
 *xp = t1;
 *yp = t0;
}

int zip1 = 15213;
int zip2 = 91125;

void call_swap()
{
 swap(&zip1, &zip2);
}

call_swap:
• • •
pushl $zip2 # Global var
pushl $zip1 # Global var
call swap
• • •

&zip2

&zip1

Rtn adr %esp

Resulting
Stack

•
•
•

Calling swap from call_swap

20 15-410, S’12

swap()

void swap(int *xp, int *yp)
{
 int t0 = *xp;
 int t1 = *yp;
 *xp = t1;
 *yp = t0;
}

swap:
pushl %ebp
movl %esp,%ebp
pushl %ebx

movl 12(%ebp),%ecx
movl 8(%ebp),%edx
movl (%ecx),%eax
movl (%edx),%ebx
movl %eax,(%edx)
movl %ebx,(%ecx)

movl -4(%ebp),%ebx
movl %ebp,%esp
popl %ebp
ret

Body

Set
Up

Finish

Core

21 15-410, S’12

swap() Setup

swap:
pushl %ebp
movl %esp,%ebp
pushl %ebx

&zip2

&zip1

Rtn adr %esp

Entering
Stack

•
•
•

%ebp

22 15-410, S’12

swap() Setup #1

swap:
pushl %ebp
movl %esp,%ebp
pushl %ebx

Resulting
Stack

&zip2

&zip1

Rtn adr %esp

Entering
Stack

•
•
•

%ebp

yp

xp

Rtn adr

Old %ebp

%ebp
•
•
•

%esp

23 15-410, S’12

swap() Setup #2

swap:
pushl %ebp
movl %esp,%ebp
pushl %ebx

yp

xp

Rtn adr

Old %ebp %ebp

Resulting
Stack

•
•
•

&zip2

&zip1

Rtn adr %esp

Entering
Stack

•
•
•

%ebp

%esp

24 15-410, S’12

swap() Setup #3

swap:
pushl %ebp
movl %esp,%ebp
pushl %ebx

yp

xp

Rtn adr

Old %ebp %ebp

Resulting
Stack

•
•
•

&zip2

&zip1

Rtn adr %esp

Entering
Stack

•
•
•

%ebp

Old %ebx %esp

25 15-410, S’12

Effect of swap() Setup

yp

xp

Rtn adr

Old %ebp %ebp 0

 4

 8

12

Offset
(relative to %ebp)

Resulting
Stack

•
•
•

&zip2

&zip1

Rtn adr %esp

Entering
Stack

•
•
•

%ebp

Old %ebx %esp

movl 12(%ebp),%ecx # get yp
movl 8(%ebp),%edx # get xp
. . .

Body

 -4

26 15-410, S’12

swap() Finish #1

movl -4(%ebp),%ebx
movl %ebp,%esp
popl %ebp
ret

yp

xp

Rtn adr

Old %ebp %ebp 0

 4

 8

12

Offset

swap’s
Stack •

•
•

Old %ebx %esp-4

ObservationObservation
 Restoring saved register %ebx
 “Hold that thought”

yp

xp

Rtn adr

Old %ebp %ebp 0

 4

 8

12

Offset

•
•
•

Old %ebx %esp-4

27 15-410, S’12

swap() Finish #2

movl -4(%ebp),%ebx
movl %ebp,%esp
popl %ebp
ret

yp

xp

Rtn adr

Old %ebp %ebp 0

 4

 8

12

Offset

swap’s
Stack •

•
•

Old %ebx %esp-4

yp

xp

Rtn adr

Old %ebp %ebp 0

 4

 8

12

Offset

swap’s
Stack •

•
•

%esp

28 15-410, S’12

swap() Finish #3

movl -4(%ebp),%ebx
movl %ebp,%esp
popl %ebp
ret

yp

xp

Rtn adr

%ebp

 4

 8

12

Offset

swap’s
Stack •

•
•

yp

xp

Rtn adr

Old %ebp %ebp 0

 4

 8

12

Offset

swap’s
Stack •

•
•

%esp

%esp

29 15-410, S’12

swap() Finish #4

movl -4(%ebp),%ebx
movl %ebp,%esp
popl %ebp
ret

&zip2

&zip1 %esp

Exiting
Stack

•
•
•

%ebp

Observation/queryObservation/query
 Saved & restored caller's register %ebx
 Didn't do so for %eax, %ecx, or %edx!

yp

xp

Rtn adr

%ebp

 4

 8

12

Offset

swap’s
Stack •

•
•

%esp

30 15-410, S’12

Register Saving Conventions

When procedure When procedure yoo()yoo() calls calls who()who()::
 yoo() is the caller, who() is the callee

Can a register be used for temporary storage?Can a register be used for temporary storage?

 Contents of register %edx overwritten by who()

yoo:
• • •
movl $15213, %edx
call who
addl %edx, %eax
• • •
ret

who:
• • •
movl 8(%ebp), %edx
addl $91125, %edx
• • •
ret

31 15-410, S’12

Register Saving Conventions

When procedure When procedure yoo()yoo() calls calls who()who()::
 yoo() is the caller, who() is the callee

Can a register be used for temporary storage?Can a register be used for temporary storage?

DefinitionsDefinitions
 “Caller Save” register

 Caller saves temporary in its frame before calling

 “Callee Save” register
 Callee saves temporary in its frame before using

ConventionsConventions
 Which registers are caller-save, callee-save?

32 15-410, S’12

IA32/Linux Register Usage

Integer RegistersInteger Registers
 Two have special uses

 %ebp, %esp
 Three managed as

callee-save
 %ebx, %esi, %edi
 Old values saved on

stack prior to using

 Three managed as
caller-save

 %eax, %edx, %ecx
 Do what you please,

but expect any callee
to do so, as well

 Register %eax also
holds return value

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

Caller-Save
Temporaries

Callee-Save
Temporaries

Special

33 15-410, S’12

Stack Summary

Stack makes recursion workStack makes recursion work
 Private storage for each instance of procedure call

 Instantiations don't clobber each other
 Addressing of locals + arguments can be relative to stack

positions

 Can be managed by stack discipline
 Procedures return in inverse order of calls

IA32 procedures: instructions + conventionsIA32 procedures: instructions + conventions
 call / ret instructions mix %eip, %esp in a fixed way

 Register usage conventions
 Caller / Callee save
 %ebp and %esp

 Stack frame organization conventions
 Which argument is pushed first

34 15-410, S’12

Before & After main()

int main(int argc, char *argv[]) {

 if (argc > 1) {

 printf(“%s\n”, argv[1]);

 } else {

 char * av[3] = { 0, 0, 0 };

 av[0] = argv[0]; av[1] = “Fred”;

 execvp(av[0], av);

 }

 return (0);

}

35 15-410, S’12

The Mysterious Parts

argc, argvargc, argv
 Strings from one program
 Available while another program is running
 Which part of the memory map are they in?
 How did they get there?

What happens when What happens when main()main() does “ does “return(0)return(0)”???”???
 There's no more program to run...right?
 Where does the 0 go?
 How does it get there?

410 students should seek to abolish mystery410 students should seek to abolish mystery

36 15-410, S’12

The Mysterious Parts

argc, argvargc, argv
 Strings from one program
 Available while another program is running
 Inter-process sharing/information transfer is OS's job

 OS copies strings from old address space to new in exec()
 Traditionally placed “below bottom of stack”
 Other weird things (environment, auxiliary vector) (above argv)

main()
printf()

....

arg
vector

37 15-410, S’12

The Mysterious Parts

What happens when What happens when main()main() does “ does “return(0)return(0)”?”?
 Defined by C to have same effect as “exit(0)”
 But how??

38 15-410, S’12

The Mysterious Parts

What happens when What happens when main()main() does “ does “return(0)return(0)”?”?
 Defined by C to have same effect as “exit(0)”
 But how??

The “main() wrapper”The “main() wrapper”
 Receives argc, argv from OS

 Calls main(), then calls exit()

 Provided by C library, traditionally in “crt0.s”
 Often has a “strange” name

/* not actual code */
void ~~main(int argc, char *argv[]) {
 exit(main(argc, argv));
}

39 15-410, S’12

Project 0 - “Stack Crawler”

C/Assembly functionC/Assembly function
 Can be called by any C function
 Prints stack frames in a symbolic way

---Stack Trace Follows---

Function fun3(c='c', d=2.090000), in

Function fun2(f=35.000000), in

Function fun1(count=0), in

Function fun1(count=1), in

Function fun1(count=2), in

...

40 15-410, S’12

Project 0 - “Stack Crawler”

Conceptually easyConceptually easy
 Calling convention specifies layout of stack
 Stack is “just memory” - C happily lets you read & write

Key questionsKey questions
 How do I know 0x80334720 is “fun1”?

 How do I know fun3()'s second parameter is called “d”?

41 15-410, S’12

Project 0 “Data Flow”

fun.c tb.c

tb_globals.c

symbol-table array
many slots, blank

42 15-410, S’12

Project 0 “Data Flow” - Compilation

fun.o

libtraceback.a

tb.o

tb_globals.o

43 15-410, S’12

Project 0 “Data Flow” - Linking

fun

tb.o

tb_globals.o

fun.o

debugger info

44 15-410, S’12

Project 0 “Data Flow” - P0 “Post-Linking”

fun

tb.o

tb_globals.o

fun.o

debugger info
simplify

symtabgen

mutate

45 15-410, S’12

Summary

Review of stack knowledgeReview of stack knowledge

What makes What makes main()main() special special

Project 0 overviewProject 0 overview
Look for handout this evening

Start interviewing Project 2/3/4 partners!Start interviewing Project 2/3/4 partners!

46 15-410, S’12

Movie Night

““Hackers”Hackers”
 Thursday, August 26th

 19:00, GHC 4401 (“Rashid Auditorium”)
 Presented by the CMU Computer Club

