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Boot Camp

Dave Eckhardt
de0u@andrew.cmu.edu
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Query #1

● Who has a class that conflicts with the 410 
lecture?
– Contact me after class (big potential for trouble)
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Query #2

● What is source code “for”?
– What is done with it?
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Source code

● The purpose of code is for people to read
– By a reviewer / security auditor

– By your group

– By your manager

– By your successor

– By you six months later (6 hours later if no sleep)

● Oh, yeah, the compiler reads it too
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This is a Transformative Class

● Genuine achievement, available to you
– What is an OS, really?

– Concurrency (locks, races, deadlock)

– What is VM, really?

– Process model, C run-time model

– Interrupts

– Design synthesis, planning

– Serious competence in debugging!

● If that sounds like a lot, it is!
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This Is a Hard Class

● CS doesn't have “capstone” classes, but similar...
● Traditional hazards

– 410 letter grade one lower than typical classes

– All other classes this semester: one grade lower

● Aim
– If you aim for a B you might not get one

– If you aim for a C you might not get one

– “I'll drop if I can't get an A”
● (You must discuss this with your partner early)
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The Shape of a Class

Effort/Excitement by Project

Yow!
Focus...
Feasible!
Workable
Groovin'
Hard!
Challenge!!
Done!!!
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15-410

Effort/Excitement by Project

P0
P1
P2
P3
P4
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Scale Matters!

Effort/Excitement by Project

Yow!
Focus...
Feasible!
Workable
Groovin'
Hard!
Challenge!!
Done!!!
 
P0
P1
P2
P3
P4
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Implications

● “Trouble with one assignment” is real trouble
– You can't just “swing at the next ball”

● The next ball is two to four times faster!

– Each project is training for the next (like Math)
● If you skip part of one project, the next one might be 

unachievable.

● So...
– Aim to do really well on P0

● Start the first day (for sure by the second)

– Then recover, aim to do even better on P1
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Good News

● Good news...it can be done!
– Spring 2010

● Two groups dropped
● One “lone wolf” dropped
● Two groups half-dropped (merged into one, finished ok!)
● One group split
● All other groups turned in working kernels

● Remainder of this lecture
– How to get from here to there
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Academic Integrity

● This is a design class
– Not a “cut&paste class” or a “looking things up” class

– We expect you to practice solving design problems

● Model: our spec ⇒ your ideas ⇒ your code

– Not: copy code from Linux kernel

– Not: port code from some other OS class / web site

– Completely not: use some other student's code

● There are exceptions
– Some uses of some outside code are ok: see syllabus!
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Academic Integrity

● “We expect you to fail”
– It is possible to fail an assignment and pass the class

● (If you come from another university this may be new)

– It is not possible to copy or cheat on an assignment 
and pass the class
● Beyond failing, other dreadful things happen too

– Dean of Student Affairs
– Scholarship problems
– Graduation delays

● Please don't turn a simple failure into a giant catastrophe
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Work Flow – You may be used to...

● Assignment handout ⇒ code outline

● Compilation implies correctness
● Graded by a script
● All done!

– Never use it again

– Delete it at end of semester

● Total opposite of real life
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Work Flow – 410 Additions

● Design
● Divide into parts
● Manage your partner
● Merge
● Debug hard problems
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Surprises

● “Code complete” means “I am far behind”
– Merge can take three days

– Then you start to find bugs (1-2 weeks)

● Code with “the right idea” will immediately crash
– If you're lucky!

● This is not a “basic idea is right” class
– You can't ship “basic ideas” to customers

– Understand all details–then you have the basic idea
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On Debugging

As soon as we started programming, we 
found to our surprise that it wasn't as easy to 
get programs right as we had thought.  
Debugging had to be discovered.  I can 
remember the exact instant when I realized 
that a large part of my life from then on was 
going to be spent in finding mistakes in my 
own programs.
– Maurice Wilkes (1949)
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Debugging

● Bugs aren't just last-minute glitches
● They are crucial learning experiences

– Learning a lot can take a lot of time
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What Does A Bug Mean?

● “It tells me 'triple fault' – why??”
– Research: 20 minutes

– Think: 20 minutes

– Debug: 2 hours.

– ...three times.

● May need to write code to trap a bad bug
– Asserts or more-targeted debug module

● Then you will find your design was wrong!
– Don't be shocked – this is part of 410 / life
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“All Done”?

● Finally, when you're done...
– You will use your code for the next assignment!

– We will read it (goal: every line)
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Warning About 15-213

● It's an absolutely vital class
● We expect you to know

– Byte, word, register, 1<<2

– Thread, stack

– malloc(), free() (when & why)

– how to translate C ⇔ x86

● Trouble with 213?
– If you didn't get a B or an A, see me

– If the malloc() lab didn't go well, see me
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Warning to Graduate Students

● This is an undergraduate class
– There will be “a diversity of grades”

● Getting “average grades on every assignment” 
most likely means a C, not a B
– “Everything pretty much worked” is C territory

– B requires repeated solid performance 

– A requires repeated excellence 
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The deadline disaster

● “If you wait until the last minute, it takes only a 
minute!” -- Vince Cate

● Small problem
– Your grade will probably suffer

● Big problem
– Learning and retention require sleep

– Why work super-hard only to forget?
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How to Have Trouble

● How to get an R
– Arrive unprepared (e.g., barely escape 213)

– Do everything at the last minute

– Don't read the book or come to class

– Hide from course staff no matter what

● How to get a D
– Don't get the kernel project genuinely working

● (There are other ways, but this one is popular)
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How to do well!

● Confront the material
● Confront debugging
● Embrace the experience

– Unix, Simics, revision control

● Invest in good code
● Start unbelievably early
● Read your partner's code
● Leave time for design
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Confront the Material

● We are doing printf() all the way down
– Subroutine linkage, how & why

– Stub routine, IDT entry, trap handler wrapper

– Output/input-echo interlock

– Logical cursor vs. physical cursor

– Video memory (what does scrolling mean?)

● Can't really gloss over anything
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Confront Debugging

● Real life: you will debug other people's code
– Any bug could be yours, partner's, ours, or Simics; 

you need to find it.

● Can't debug using only printf()
– printf() changes your code 

– printf() may be broken by whatever breaks your code

– Learn the Simics debugger

– Assertions, consistency checks

– Debugging code
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On Investing

● A week of coding can sometimes save 
an hour of thought.
– Josh Bloch
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Confront Debugging

● ½ hour of studying the debugger
– vs. 2 days of thrashing

● Papering over a problem
– Re-ordering object files to avoid crash
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Doing Well – Embrace the Experience

● Embrace the Unix development experience
– If you try to keep it at arm's length it will slow you 

down

● Embrace the Simics debugger
– If you try to keep it at arm's length it will slow you 

down

● Embrace source control
– If you keep it at arm's length ...
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Doing Well – Invest in Good Code

● Mentally commit to writing good code
– Not just something kinda-ok

– You will depend on your code

● Anand Thakker (Fall 2003)
– Remind yourself that you love yourself...

– ...so you should write good code for yourself
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Doing Well – Start Early

● Starting a week late on a 2-week project will be 
bad

● Not making “just one” checkpoint can be bad
– Missing two kernel-project checkpoints...

● ...may make passing impossible.



33

Doing Well – Read Partner's Code

● You will need to read everything your partner 
wrote
– (and answer test questions about it)

● Set up a mechanism
– Daily meeting?  Careful reading of merge logs?

● Do “one of each”
– Partner does N-1 stub routines, you should do the 

hardest
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Doing Well – Time for Design

● “Design” means you may need to think overnight
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How to get an A

● Understand everything
– (consider 2-3 ways to do each thing, pick the best)

● Write genuinely excellent code
– asserts, good variable names, source control

● Document before coding
– Actual 15-410 students do this!

● Read all of your partner's code
● Work with your partner (merge continuously)
● Be “done” early, “just in case”
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First Item of Work

● Read the syllabus
– It contains things you need to know

● Things which will be painful surprises if you don't know 
them

● Thanks!
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Further Reading

● Sleep to Remember
– Matthew P. Walker

– American Scientist, July/August 2006

– “The brain needs sleep before and after learning new 
things, regardless of the type of memory.  Naps can 
help, but caffeine isn't an effective substitute.”


