
1

Boot Camp

Dave Eckhardt
de0u@andrew.cmu.edu

mailto:de0u@andrew.cmu.edu

2

Query #1

● Who has a class that conflicts with the 410
lecture?
– Contact me after class (big potential for trouble)

3

Query #2

● What is source code “for”?
– What is done with it?

4

Source code

● The purpose of code is for people to read
– By a reviewer / security auditor

– By your group

– By your manager

– By your successor

– By you six months later (6 hours later if no sleep)

● Oh, yeah, the compiler reads it too

5

This is a Transformative Class

● Genuine achievement, available to you
– What is an OS, really?

– Concurrency (locks, races, deadlock)

– What is VM, really?

– Process model, C run-time model

– Interrupts

– Design synthesis, planning

– Serious competence in debugging!

● If that sounds like a lot, it is!

6

This Is a Hard Class

● CS doesn't have “capstone” classes, but similar...
● Traditional hazards

– 410 letter grade one lower than typical classes

– All other classes this semester: one grade lower

● Aim
– If you aim for a B you might not get one

– If you aim for a C you might not get one

– “I'll drop if I can't get an A”
● (You must discuss this with your partner early)

7

The Shape of a Class

Effort/Excitement by Project

Yow!
Focus...
Feasible!
Workable
Groovin'
Hard!
Challenge!!
Done!!!

8

15-410

Effort/Excitement by Project

P0
P1
P2
P3
P4

9

Scale Matters!

Effort/Excitement by Project

Yow!
Focus...
Feasible!
Workable
Groovin'
Hard!
Challenge!!
Done!!!

P0
P1
P2
P3
P4

10

Implications

● “Trouble with one assignment” is real trouble
– You can't just “swing at the next ball”

● The next ball is two to four times faster!

– Each project is training for the next (like Math)
● If you skip part of one project, the next one might be

unachievable.

● So...
– Aim to do really well on P0

● Start the first day (for sure by the second)

– Then recover, aim to do even better on P1

11

Good News

● Good news...it can be done!
– Spring 2010

● Two groups dropped
● One “lone wolf” dropped
● Two groups half-dropped (merged into one, finished ok!)
● One group split
● All other groups turned in working kernels

● Remainder of this lecture
– How to get from here to there

12

Academic Integrity

● This is a design class
– Not a “cut&paste class” or a “looking things up” class

– We expect you to practice solving design problems

● Model: our spec ⇒ your ideas ⇒ your code

– Not: copy code from Linux kernel

– Not: port code from some other OS class / web site

– Completely not: use some other student's code

● There are exceptions
– Some uses of some outside code are ok: see syllabus!

13

Academic Integrity

● “We expect you to fail”
– It is possible to fail an assignment and pass the class

● (If you come from another university this may be new)

– It is not possible to copy or cheat on an assignment
and pass the class
● Beyond failing, other dreadful things happen too

– Dean of Student Affairs
– Scholarship problems
– Graduation delays

● Please don't turn a simple failure into a giant catastrophe

14

Work Flow – You may be used to...

● Assignment handout ⇒ code outline

● Compilation implies correctness
● Graded by a script
● All done!

– Never use it again

– Delete it at end of semester

● Total opposite of real life

15

Work Flow – 410 Additions

● Design
● Divide into parts
● Manage your partner
● Merge
● Debug hard problems

16

Surprises

● “Code complete” means “I am far behind”
– Merge can take three days

– Then you start to find bugs (1-2 weeks)

● Code with “the right idea” will immediately crash
– If you're lucky!

● This is not a “basic idea is right” class
– You can't ship “basic ideas” to customers

– Understand all details–then you have the basic idea

17

On Debugging

As soon as we started programming, we
found to our surprise that it wasn't as easy to
get programs right as we had thought.
Debugging had to be discovered. I can
remember the exact instant when I realized
that a large part of my life from then on was
going to be spent in finding mistakes in my
own programs.
– Maurice Wilkes (1949)

18

Debugging

● Bugs aren't just last-minute glitches
● They are crucial learning experiences

– Learning a lot can take a lot of time

19

What Does A Bug Mean?

● “It tells me 'triple fault' – why??”
– Research: 20 minutes

– Think: 20 minutes

– Debug: 2 hours.

– ...three times.

● May need to write code to trap a bad bug
– Asserts or more-targeted debug module

● Then you will find your design was wrong!
– Don't be shocked – this is part of 410 / life

20

“All Done”?

● Finally, when you're done...
– You will use your code for the next assignment!

– We will read it (goal: every line)

21

Warning About 15-213

● It's an absolutely vital class
● We expect you to know

– Byte, word, register, 1<<2

– Thread, stack

– malloc(), free() (when & why)

– how to translate C ⇔ x86

● Trouble with 213?
– If you didn't get a B or an A, see me

– If the malloc() lab didn't go well, see me

22

Warning to Graduate Students

● This is an undergraduate class
– There will be “a diversity of grades”

● Getting “average grades on every assignment”
most likely means a C, not a B
– “Everything pretty much worked” is C territory

– B requires repeated solid performance

– A requires repeated excellence

23

The deadline disaster

● “If you wait until the last minute, it takes only a
minute!” -- Vince Cate

● Small problem
– Your grade will probably suffer

● Big problem
– Learning and retention require sleep

– Why work super-hard only to forget?

24

How to Have Trouble

● How to get an R
– Arrive unprepared (e.g., barely escape 213)

– Do everything at the last minute

– Don't read the book or come to class

– Hide from course staff no matter what

● How to get a D
– Don't get the kernel project genuinely working

● (There are other ways, but this one is popular)

25

How to do well!

● Confront the material
● Confront debugging
● Embrace the experience

– Unix, Simics, revision control

● Invest in good code
● Start unbelievably early
● Read your partner's code
● Leave time for design

26

Confront the Material

● We are doing printf() all the way down
– Subroutine linkage, how & why

– Stub routine, IDT entry, trap handler wrapper

– Output/input-echo interlock

– Logical cursor vs. physical cursor

– Video memory (what does scrolling mean?)

● Can't really gloss over anything

27

Confront Debugging

● Real life: you will debug other people's code
– Any bug could be yours, partner's, ours, or Simics;

you need to find it.

● Can't debug using only printf()
– printf() changes your code

– printf() may be broken by whatever breaks your code

– Learn the Simics debugger

– Assertions, consistency checks

– Debugging code

28

On Investing

● A week of coding can sometimes save
an hour of thought.
– Josh Bloch

29

Confront Debugging

● ½ hour of studying the debugger
– vs. 2 days of thrashing

● Papering over a problem
– Re-ordering object files to avoid crash

30

Doing Well – Embrace the Experience

● Embrace the Unix development experience
– If you try to keep it at arm's length it will slow you

down

● Embrace the Simics debugger
– If you try to keep it at arm's length it will slow you

down

● Embrace source control
– If you keep it at arm's length ...

31

Doing Well – Invest in Good Code

● Mentally commit to writing good code
– Not just something kinda-ok

– You will depend on your code

● Anand Thakker (Fall 2003)
– Remind yourself that you love yourself...

– ...so you should write good code for yourself

32

Doing Well – Start Early

● Starting a week late on a 2-week project will be
bad

● Not making “just one” checkpoint can be bad
– Missing two kernel-project checkpoints...

● ...may make passing impossible.

33

Doing Well – Read Partner's Code

● You will need to read everything your partner
wrote
– (and answer test questions about it)

● Set up a mechanism
– Daily meeting? Careful reading of merge logs?

● Do “one of each”
– Partner does N-1 stub routines, you should do the

hardest

34

Doing Well – Time for Design

● “Design” means you may need to think overnight

35

How to get an A

● Understand everything
– (consider 2-3 ways to do each thing, pick the best)

● Write genuinely excellent code
– asserts, good variable names, source control

● Document before coding
– Actual 15-410 students do this!

● Read all of your partner's code
● Work with your partner (merge continuously)
● Be “done” early, “just in case”

36

First Item of Work

● Read the syllabus
– It contains things you need to know

● Things which will be painful surprises if you don't know
them

● Thanks!

37

Further Reading

● Sleep to Remember
– Matthew P. Walker

– American Scientist, July/August 2006

– “The brain needs sleep before and after learning new
things, regardless of the type of memory. Naps can
help, but caffeine isn't an effective substitute.”

