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What is Virtualization?
● Virtualization:

− Process of presenting and partitioning computing
resources in a logical way rather than partitioning
according to physical reality

● Virtual Machine:
− An execution environment (logically) identical to a

physical machine, with the ability to execute a full
operating system

● The Process abstraction is related to virtualization: it’s
at least similar to a physical machine

Process : OS :: OS : ?
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Advantages of the Process
Abstraction

● Each process is a pseudo-machine
● Processes have their own registers, address space, file

descriptors (sometimes)
● Protection from other processes
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Disadvantages of the Process
Abstraction

● Processes share the file system
● Difficult to simultaneously use different versions of:

− Programs, libraries, configurations
● Single machine owner:

− root is the superuser
− Which “domain” does a machine belong to?
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Disadvantages of the Process
Abstraction

● Processes share the same kernel
− Kernel/OS specific software
− Kernels are huge, lots of possibly buggy code

● Processes have limited degree of protection, even from
each other
− OOM (out of memory) killer (in Linux) frees memory when

all else fails
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Why Use Virtualization?

● Process abstraction at the kernel layer
− Separate file system
− Different machine owners

● Offers much better protection (in theory)
− Secure hypervisor, fair scheduler
− Interdomain DoS?  Thrashing?

● Run two operating systems on the same machine!
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Why Use Virtualization?

● Huge impact on enterprise hosting
− No longer have to sell whole machines
− Sell machine slices
− Can put competitors on the same physical hardware

Can separate instance of VM from instance of hardware
● Live migration of VM from machine to machine

− No more maintenance downtime
● VM replication to provide fault-tolerance

− Why bother doing it at the application level?
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Disadvantages of Virtual Machines

● Attempt to solve what really is an abstraction issue
somewhere else
− Monolithic kernels
− Not enough partitioning of global identifiers

● pids, uids, etc
● Provides some interesting mechanisms, but may not

directly solve “the problem”
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Disadvantages of Virtual Machines

● Feasibility issues
− Hardware support?  OS support?
− Admin support?
− VMware ESX seems to be doing the job well

● Performance issues
− Is a 10-20% performance hit tolerable?
− Can your NIC or disk keep up with the load?
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Full Virtualization

● IBM CP-40 (later CP/CMS & VM/CMS) (1967)
− Supported 14 simultaneous S/360 virtual machines.

● Popek & Goldberg: Formal Requirements for
Virtualizable Third Generation Architectures (1974)
− Defines characteristics of a Virtual Machine Monitor
− Describes a set of architecture features sufficient to

support virtualization
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Virtual Machine Monitor

● Equivalence:
− Provides an environment essentially identical with the

original machine
● Efficiency:

− Programs running under a VMM should exhibit only minor
decreases in speed

● Resource Control:
− VMM is in complete control of system resources

Process : Kernel :: VM : VMM
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Popek & Goldberg Instruction
Classification

● Privileged instructions:
− Trap if the processor is in user mode
− Do not trap if in supervisor mode

● Sensitive instructions:
− Attempt to change configuration of system resources
− Illustrate different behaviors depending on system

configuration
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Popek & Goldberg Theorem

“... a virtual machine monitor may be constructed if the
set of sensitive instructions for that computer is a
subset of the set of privileged instructions.”

● All instructions must either:
− Exhibit the same result in user and supervisor modes
− Or, they must trap if executed in user mode

● Architectures that meet this requirement:
− IBM S/370, Motorola 68010+, PowerPC, others.
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x86 Virtualization

● x86 ISA does not meet the Popek & Goldberg
requirements for virtualization

● ISA contains 17+ sensitive, unprivileged instructions:
− SGDT, SIDT, SLDT, SMSW, PUSHF, POPF, LAR, LSL,
VERR, VERW, POP, PUSH, CALL, JMP, INT, RET,
STR, MOV

− Most simply reveal the processor's CPL
● Virtualization is still possible, requires a workaround
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VMware (1998)

● Runs guest operating system in ring 3
− Maintains the illusion of running the guest in ring 0

● Insensitive instructions execute as is:
− addl %ecx, %eax

● Privileged instructions trap to the VMM:
− cli

● Performs binary translation on guest code to work
around sensitive, unprivileged instructions:
− popf ⇒ int $99
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VMware (1998)

Privileged instructions trap to the VMM:
cli

actually results in:
int $13 (General Protection Fault)

which gets handled:
void gpf_exception(int vm_num, regs_t *regs)
{
    switch (vmm_get_faulting_opcode(regs->eip))
    {
      ...

case CLI_OP:
            vmm_defer_interrupts(vm_num);

 break;
...

  }
}
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VMware (1998)

A sensitive, unprivileged instruction:
popf (restore %EFLAGS from the stack)

we would like to result in:
int $13 (General Protection Fault)

but actually results in:
%EFLAGS ← all bits from stack except IOPL
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VMware (1998)

So, VMware performs binary translation on guest code:
popf

VMware translates to:
int $99 (popf handler)

which gets handled:
void popf_handler(int vm_num, regs_t *regs)
{
     regs->eflags = *(regs->esp);
     regs->esp++;
}

Note: technique is similar to software fault isolation (patent) -- 1993 (!)
Steven Lucco’s thesis, UCB.
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Virtual Memory

● Kernels can access physical memory and implement
virtual memory.

● How do we virtualize physical memory?
− Use virtual memory (obvious so far, isn’t it?)

● If guest kernel runs in virtual memory, how does is
provide virtual memory for processes?
− VMM may have to “shadow” page mapping tables
− Set CR3 traps, constructs real virtual memory
− Writes to page directories and page tables are trapped,

mapped to “shadow” tables
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Hardware Assisted Virtualization

● Recent variants of the x86 ISA that meet Popek &
Goldberg requirements
− Intel VT-x (2005), AMD-V (2006)

● VT-x introduces two new operating modes:
− VMX root operation & VMX non-root operation
− VMM runs in VMX root, guest OS runs in non-root
− Both modes support all privilege rings
− Guest OS runs in (non-root) ring 0, no illusions necessary

● At present, binary translation as used in VMware is
faster than hardware solution.
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Paravirtualization
(Denali 2002, Xen 2003)

● First observation:
− If OS is open, then it can be modified at the source level to

supported limited virtualization
● Paravirtualizing VMMs (hypervisors) virtualize only a subset of the

x86 execution environment
● Run guest OS in rings 1-3

− No illusion about running in a virtual environment
− Guests may not use sensitive, unprivileged instructions and

expect a privileged result
● Requires source modification only to guest kernels
● No modifications to user level code and applications
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Paravirtualization
(Denali 2002, Xen 2003)

● Second observation:
− Regular VMMs must emulate hardware for devices

● Disk, ethernet, etc
● Performance is poor due to constrained device API
● Emulated hardware, x86 ISA, inb/outb, PICs

− Already modifying guest kernel, why not provide virtual
device drivers?

● Faster API?
− Hypercall interface:

syscall : kernel :: hypercall : hypervisor
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VMware vs. Paravirtualization

● Kernel's device communication with VMware (emulated):

void nic_write_buffer(char *buf, int size)
{
    for (; size > 0; size--) {

     nic_poll_ready();
     outb(NIC_TX_BUF, *buf++);
 }

}

● Kernel's device communication with hypervisor (hypercall):

void nic_write_buffer(char *buf, int size)
{
    vmm_write(NIC_TX_BUF, buf, size);
}
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Xen (2003)

● Popular hypervisor supporting paravirtualization
− Hypervisor runs on hardware
− Runs two kinds of kernels
− Host kernel runs in domain 0 (dom0)

● Required by Xen to boot
● Hypervisor contains no peripheral device drivers
● dom0 needed to communicate with devices
● Supports all peripherals that Linux or NetBSD do!

− Guest kernels run in unprivileged domains (domUs)
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Xen (2003)
● Provides virtual devices to guest kernels

− Virtual block device, virtual ethernet device
− Devices communicate with hypercalls & ring buffers
− Can also assign PCI devices to specific domUs

● Video card
● Also supports hardware assisted virtualization (HVM)

− Allows Xen to run unmodified domUs
− Useful for bootstrapping
− Also used for “the OS” that can't be source modified

● Supports Linux & NetBSD as dom0 kernels

● Linux, FreeBSD, NetBSD, and Solaris as domUs
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chroot

● Runs a Unix process with a different root directory
−  Almost like having a separate file system

● Share the same kernel & non-filesystem “things”
− Networking, process control

● Only a minimal sandbox.
− /proc, /sys
− Resources: I/O bandwidth, cpu time, memory,

disk space, …
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User-mode Linux

● Runs a guest Linux kernel as a user space process
under a regular Linux kernel

● Requires highly modified Linux kernel
● No modification to application code
● Used to be popular among hosting providers
● More mature than Xen, roughly equivalent, but much

slower because Xen is designed to host kernels
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Container-based OS Virtualization

● Allows multiple instances of an OS to run in isolated containers
under the same kernel

● Assumptions:
− Want strong separation between “virtual machines”
− But we can trust the kernel
− Every “virtual machine” can use the same kernel version

● It follows that:
− Don’t need to virtualize the kernel
− Instead, beef up naming and partitioning inside the kernel: Each

container can have:
● User id, pid, tid space
● Domain name
● Isolated file system, OS version, libraries, etc.

● Total isolation between containers without virtualization overhead.
● VServer, FBSD Jails, OpenVZ, Solaris Containers
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Full System Simulation
(Simics 1998)

● Software simulates hardware components that make up
a target machine

● Interpreter executes each instruction & updates the
software representation of the hardware state

● Approach is very accurate but very slow
● Great for OS development & debugging
● Break on triple fault is better than a reset
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System Emulation
(Bochs, DOSBox, QEMU)

● Seeks to emulate just enough of system hardware components to
create an accurate “user experience”

● Typically CPU & memory subsystems are emulated
− Buses are not
− Devices communicate with CPU & memory directly

● Many shortcuts taken to achieve better performance
− Reduces overall system accuracy
− Code designed to run correctly on real hardware executes

“pretty well”
− Code not designed to run correctly on real hardware exhibits

wildly divergent behavior
● E.g. run legacy 680x0 code on PowerPC, run Windows on ??
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System Emulation Techniques

● Pure interpretation:
− Interpret each guest instruction
− Perform a semantically equivalent operation on host

● Static translation:
− Translate each guest instruction to host once
− Happens at startup
− Limited applicability, no self-modifying code
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System Emulation Techniques

● Dynamic translation:
− Translate a block of guest instructions to host

instructions just prior to execution of that block
− Cache translated blocks for better performance

● Dynamic recompilation & adaptive optimization:
− Discover what algorithm the guest code implements
− Substitute with an optimized version on the host
− Hard
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QEMU (2005)

● Open source fast processor/machine emulator
● Run an i386, amd64, arm, sparc, powerpc, or mips OS

on your i386, amd64, powerpc, alpha, sparc, arm, or
s390 computer

● Can run any i386 (or other) OS as a user application
− Complete with graphics, sound, and network support
− Don't even need to be root!

● Tolerable performance for real world Oses
− Orders of magnitude faster than Simics
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QEMU's Portable Dynamic Translator

● Cute hack: uses GCC to pregenerate translated code
● Code executing on host is generated by GCC

− Not hand written
● Makes QEMU easily portable to architectures that GCC

supports
− “The overall porting complexity of QEMU is estimated to

be the same as the one of a dynamic linker.”
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QEMU's Portable Dynamic Translator

Instructions for a given architecture are divided into
micro-operations. For example:

 addl $42, %eax # eax += 42
divides into:

movl_T0_EAX # T0   = eax
addl_T0_im  # T0  += 42
movl_EAX_T0 # eax  = T0
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QEMU's Portable Dynamic Translator

● At (QEMU) compile time, each micro-op is compiled
from C into an object file for the host architecture
− dyngen copies the machine code from object files
− Object code used as input data for code generator

● At runtime, code generator reads a stream of micro-ops
and emits a stream of machine code
− By convention, code executes properly as emitted
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QEMU's Portable Dynamic Translator

Micro-operations are coded as individual C functions:
void OPPROTO op_movl_T0_EAX(void) { T0  = EAX }
void OPPROTO op_addl_T0_im(void)  { T0 += PARAM1 }
void OPPROTO op_movl_EAX_T0(void) { EAX = T0 }

which are compiled by GCC to machine code:
op_movl_T0_EAX:

movl    0(%ebp), %ebx
ret

op_addl_T0_im:
addl    $42, %ebx
ret

op_movl_EAX_T0:
movl    %ebx, 0(%ebp)
ret
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QEMU's Portable Dynamic Translator

dyngen strips away function prologue and epilogue:
op_movl_T0_EAX:

movl    0(%ebp), %ebx

op_addl_T0_im:
addl    $42, %ebx

op_movl_EAX_T0:
movl    %ebx, 0(%ebp)
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QEMU's Portable Dynamic Translator

At runtime, QEMU translate the instruction:
add $42, %eax

into the micro-op sequence:
op_movl_T0_EAX
op_addl_T0_im
op_movl_EAX_T0

and then into machine code:
movl    0(%ebp), %ebx
addl    $42, %ebx
movl    %ebx, 0(%ebp)
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QEMU's Portable Dynamic Translator

● When QEMU encounters untranslated code, it translates
each instruction until the next branch
− Forms a single translation block

● After each code block is executed, the next block is
located in the block hash table
− Indexed by CPU state
− Or, block is translated if not found

● Write protects guest code pages after translation
− Write attempt indicates self modifying code
− Translations are invalidated on write attempt



46

Outline

● Introduction

● Virtualization

● x86 Virtualization

● Alternatives for Isolation

● Alternatives for “running two OSes on same machine”

● Summary



47

Summary

● Virtualization is big in enterprise hosting
● {Full, hardware assisted, para-}virtualization
● Containers: VM-like abstraction with high efficiency
● Emulation is a slower alternative, more flexibility
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