
15-410, S'081

Protection
Apr. 21, 2008

Dave EckhardtDave Eckhardt

Roger DannenbergRoger Dannenberg

L36_Protection

15-410
“...1969 > 1999?...”



15-410, S'082

Synchronization

Thank you for your P3extra/P4 registrationsThank you for your P3extra/P4 registrations
� Hand-in directories have been created – please veri fy!

15-412 (Fall '08)15-412 (Fall '08)
� If this was fun...
� If you want to do more,
� If you want to see how it's done “in real life”,
� If you want to write real OS code used by real peop le,
� Consider 15-412

15-610 (Spring '09)15-610 (Spring '09)
� If you want hands-on experience with tricks of the trade

� N mini-projects: hints, prefetching, transactions, ...



15-410, S'083

Synchronization

Project 4Project 4
� IPC!

� See handout later today



15-410, S'084

Outline

Protection (Chapter 14)Protection (Chapter 14)
� Protection vs. Security
� Domains (Unix, Multics)
� Access Matrix

� Concept, Implementation
� Revocation – not really covered today (see text)

Mentioning EROSMentioning EROS



15-410, S'085

Protection vs. Security

Textbook's distinctionTextbook's distinction
� Protection happens inside a computer

� Which parts may access which other parts (how)?
� Security considers external threats

� Is the system's model intact or compromised?



15-410, S'086

Protection

GoalsGoals
� Prevent intentional attacks
� “Prove” access policies  are always obeyed
� Detect bugs

� “Wild pointer” example

Policy specificationsPolicy specifications
� System administrators
� Users - May want to add new privileges to system



15-410, S'087

Objects

HardwareHardware
� Exclusive-use: printer, serial port, CD writer, ...
� Fluid aggregates: CPU, memory, disks, screen

LogicalLogical  objects objects
� Files
� Processes
� TCP port 25
� Database tables



15-410, S'088

Operations

Depend on object!Depend on object!
� Disk: read_sector(), write_sector()
� CD-ROM: read_sector(...)
� TCP port: advertise(...)
� CPU

� Conceptually: context_switch(...), <interrupt>
� More sensibly: realtime_schedule(..., ...)



15-410, S'089

Access Control

Basic access controlBasic access control
� Your processes should access only “your stuff”
� Implemented by many systems



15-410, S'0810

Access Control

Basic access controlBasic access control
� Your processes should access only “your stuff”
� Implemented by many systems

Principle of least privilegePrinciple of least privilege
� (text: “need-to-know”)
� cc -c foo.c

� should read foo.c, stdio.h, ...
� should write foo.o
� should not write ~/.cshrc

� This is harder



15-410, S'0811

Who Can Do What?

access right = (object, operations)access right = (object, operations)
� /etc/passwd, r
� /etc/passwd, r/w

process process ��    protection domainprotection domain
� P0 � de0u, P1 � bmm, ...

protection domain protection domain �� list of access rights list of access rights
� de0u � (/etc/passwd, r), (/afs/andrew/usr/de0u/.cshrc, w)



15-410, S'0812

Protection Domain Example

Domain 1Domain 1
� /dev/null, read/write
� /usr/davide/.cshrc, read/write
� /usr/rbd/.cshrc, read

Domain 2Domain 2
� /dev/null, read/write
� /usr/rbd/.cshrc, read/write
� /usr/davide/.cshrc, read



15-410, S'0813

Using Protection Domains

Least privilege requires Least privilege requires domain changesdomain changes
� Doing different jobs requires different privileges
� One printer daemon, N users

� Print each user's file with minimum necessary privi leges...



15-410, S'0814

Using Protection Domains

Least privilege requires Least privilege requires domain changesdomain changes
� Doing different jobs requires different privileges
� One printer daemon, N users

� Print each user's file with minimum necessary privi leges...

Two general approachesTwo general approaches
� “process � domain” mapping constant

� Requires domains to add and drop privileges
� User “printer” gets & releases permission to read y our file

� Domain privileges constant
� Processes domain-switch  between high-privilege, low-

privilege domains
� Printer process  opens file as you, opens printer as “printer”



15-410, S'0815

Protection Domain Models

Three sample modelsThree sample models
� Domain = user
� Domain = process
� Domain = procedure



15-410, S'0816

Domain = User

Object permissions depend on Object permissions depend on who you arewho you are

All processes you are running share privilegesAll processes you are running share privileges

Privilege adjustment?Privilege adjustment?
� Log off, log on (i.e., domain switch)



15-410, S'0817

Domain = Process

Resources managed by special processesResources managed by special processes
� Printer daemon, file server process, ...

Privilege adjustment?Privilege adjustment?
� Objects cross domain boundaries via IPC
� “Please send these bytes to the printer”

 /* concept only; pieces missing */

 s = socket(AF_UNIX, SOCK_STREAM, 0);

 connect(s, pserver, sizeof pserver);

 mh->cmsg_type = SCM_RIGHTS;

 mh->cmsg_len[0] = open(“/my/file”, 0, 0);

 sendmsg(s, &mh, 0);



15-410, S'0818

Domain = Procedure

Processor limits access at fine grainProcessor limits access at fine grain
� Hardware protection on a  per-variable  basis!

Domain switch – Domain switch – Inter-domain procedure callInter-domain procedure call
� nr = print(strlen(buf), buf);
� What is the “correct domain” for print()?

� Access to OS's data structures
� Permission to call OS's internal putbytes()
� Permission to read user's buf



15-410, S'0819

Domain = Procedure

Processor limits access at fine grainProcessor limits access at fine grain
� Hardware protection on a  per-variable  basis!

Domain switch – Domain switch – Inter-domain procedure callInter-domain procedure call
� nr = print(strlen(buf), buf);
� What is the “correct domain” for print()?

� Access to OS's data structures
� Permission to call OS's internal putbytes()
� Permission to read user's buf

� Ideally, correct domain automatically created by ha rdware
� Common case: “user mode” vs. “kernel mode”

» Only a rough approximation of the right domain
» But simple for hardware to implement



15-410, S'0820

Unix “setuid” concept

Assume Unix protection domain Assume Unix protection domain �� numeric user id numeric user id
� Not the whole story!  This overlooks:

� Group id, group vector
� Process group, controlling terminal
� Superuser

� But let's pretend for today

Domain switch via Domain switch via setuid executablesetuid executable
� Special permission bit set with chmod u+s file

� Meaning: exec() sets uid to executable file's owner
� Gatekeeper programs

� “ lpr ” run by anybody can access printer 's queue files



15-410, S'0821

Access Matrix Concept

ConceptConcept
� Formalization of “who can do what”

Basic ideaBasic idea
� Store all permissions in a matrix

� One dimension is protection domains
� Other dimension is objects
� Entries are access rights



15-410, S'0822

Access Matrix Concept

File1 File2 File3 Printer

rwxd rD1

r rwxd wD2

rwxd rwxd rwxd wD3

r r rD4



15-410, S'0823

Access Matrix Details

OS must still define process OS must still define process ��  domain mappingdomain mapping

OS must define, enforce domain-switching rulesOS must define, enforce domain-switching rules
� Ad-hoc approach

� Special domain-switch rules (e.g., log off/on)
� Can encode domain-switch in access matrix!

� Switching domains is a privilege like any other...
� Add domain columns  (domains are objects)
� Add switch-to rights to domain objects

» “D2 processes can switch to D1 at will”
� Subtle (dangerous)



15-410, S'0824

Adding “Switch-Domain” Rights

File1 File2 File3 D1

rwxd rD1

r rwxd sD2

rwxd rwxd rwxdD3

r r rD4



15-410, S'0825

Updating the Matrix 

Ad-hoc approachAd-hoc approach
� “System administrator” can update matrix

Matrix approachMatrix approach
� Add copy rights  to objects

� Domain D1 may copy read rights for File2
� So D1 can give D2 the right to read File2



15-410, S'0826

Adding Copy Rights

File1 File2 File3

rwxdR rD1

r rwxdD2

rwxd rwxd rwxdD3

r r rD4



15-410, S'0827

Adding Copy Rights

File1 File2 File3

rwxdR rD1

r r rwxdD2

rwxd rwxd rwxdD3

r r rD4



15-410, S'0828

Updating the Matrix 

Add Add owner rightsowner rights  to objects to objects
� D1 has owner rights for O47
� D1 can modify the O47 column at will

� Can add, delete rights to O47 from all other domain s

Add Add control rightscontrol rights  to domain objects to domain objects
� D1 has control rights for D2
� D1 can modify D2's rights to any object

� D1 may be teacher, parent, ...



15-410, S'0829

Access Matrix Implementation

Implement matrix via matrix?Implement matrix via matrix?
� Huge, messy, slow

VeryVery  clumsy for... clumsy for...
� “world readable file”

� Need one entry per domain
� Must fill rights in when creating new domain

� “private file”
� Lots of blank squares

» Can Alice read the file? - No
» Can Bob read the file? - No
» ...

Two options – “ACL”, “capabilities”Two options – “ACL”, “capabilities”



15-410, S'0830

Access Control List

File1

D1

rD2

rwxdD3

rD4



15-410, S'0831

Access Control List (ACL)

List per matrix column (object)List per matrix column (object)
� de0u, read; bmm, read+write

Naively, domain = userNaively, domain = user

AFS ACLsAFS ACLs
� domain = user, user:group, system:anyuser, machine list 

(system:campushost)
� positive rights, negative rights

� de0u:staff rlid
� nwf   -id

Doesn't really do Doesn't really do least privilegeleast privilege
� System stores many  privileges per user, permanently...



15-410, S'0832

Capability List

File1 File2 File3

rwxdR rD1



15-410, S'0833

Capability Lists

CapabilityCapability  Lists Lists
� List per matrix row (domain)
� Naively, domain = user

� More typically, domain = process

Permit Permit least privilegeleast privilege
� Domains can transfer & forget capabilities

� Possible to create “just right” domains
» cc which can't write to .cshrc

� Bootstrapping problem
� Who gets which rights at boot?
� Who gets which rights at login?
� Typical solution: store capability lists in files s omehow



15-410, S'0834

Mixed Approach

Permanently store ACL for each filePermanently store ACL for each file
� Must fetch ACL from disk to access file
� ACL fetch & evaluation may be long, complicated

open() checks ACL, creates capabilityopen() checks ACL, creates capability
� “Process 33 has read-only access to vnode #5894”
� Records access rights for this process
� Quick verification on each read(), write()
� Result: per-process fd table “caches” results of AC L 

checks



15-410, S'0835

Internal  Protection?

Understood so far:Understood so far:
� Which user process should be allowed to access what ?

� Job performed by OS
� How to protect OS code, data from user processes

� Hardware user/kernel boundary

Can we do better?Can we do better?
� Can we protect parts  of the OS from other parts?



15-410, S'0836

Traditional OS Layers

Disk Device Driver

Page System

File System

Print Queue

User Program



15-410, S'0837

Traditional OS Layers

Disk Device Driver

Page System

File System

Print Queue

User Program

Smaller
Simpler

More Critical



15-410, S'0838

Traditional OS Layers

Disk Device Driver

Page System

File System

Print Queue

User Program

Equally
Trusted!!



15-410, S'0839

Traditional OS Layers

Disk Device Driver

Page System

File System

Print Queue

User Program

Wild Pointer                                        
Access                                



15-410, S'0840

Multics

Multics =Multics =
� Multiplexed Information and Computing Service
� Plan: “information utility”

� Mainframe per city

Designed to scaleDesigned to scale
� Many users, many programmers
� Protection seen as a key ingredient of reliability



15-410, S'0841

Multics Approach

Trust Trust hierarchyhierarchy

Small “simple” very-trusted Small “simple” very-trusted kernelkernel
� Main job: access control
� Goal: “prove” it correct

Privilege layers (nested “rings”)Privilege layers (nested “rings”)
� Ring 0 = kernel, “inside” every other ring
� Ring 1 = operating system core
� Ring 2 = operating system services
� ...
� Ring 7 = user programs



15-410, S'0842

Multics Ring Architecture

Segmented virtual address spaceSegmented virtual address space
� One segment per software module or data file
� “Print module” may contain

� Entry points in a code segment
» list_printers() , list_queue() , enqueue() , ...

� Data segment
» List of printers, accounting data, queues

� Segment � file (segments persist across reboots)
� VM permissions focus on segments, not pages

Access checked by hardwareAccess checked by hardware
� Which procedures can you call?
� Is access to that segment's data legal?



15-410, S'0843

Multics Rings

File System
Page Store

Disk

Kernel



15-410, S'0844

Multics Rings

File System
Page Store

Disk

Kernel
Wild Pointer                                   

Access                            



15-410, S'0845

Multics Rings

File System
Page Store

Disk

Kernel
Wild Pointer                                   

Access                            

                 Fault



15-410, S'0846

Multics Domain Switching

CPU has CPU has current ring numbercurrent ring number  register register
� Current privilege level, [0..7]

Segment descriptors includeSegment descriptors include
� “Traditional stuff”

� Segment's limit (size)
� Segment's base in physical memory

� Ring number
� Access bracket [min, max]

� Segment “appears in” ring min...ring max
� Access bits (read, write, execute)
� Entry limit
� List of gates (procedure entry points)



15-410, S'0847

Multics Domain Switching

Every procedure call is a potential domain switchEvery procedure call is a potential domain switch

Calling a procedure at current privilege level?Calling a procedure at current privilege level?
� Just call it

Calling a more-privileged procedure?Calling a more-privileged procedure?
� Call mechanism checks entry point is legal
� We enter more-privileged mode
� Called procedure can read & write all of our data

Calling a less-privileged procedure?Calling a less-privileged procedure?
� We want to show it some  of our data (procedure params)
� We don't want it to modify  our data



15-410, S'0848

Multics Domain Switching

min <= current-ring <= maxmin <= current-ring <= max
� We are executing in ring 3
� Procedure is “part of” rings 2..4
� Standard procedure call



15-410, S'0849

Multics Domain Switching

current-ring > maxcurrent-ring > max
� Calling a more-privileged procedure
� It can do whatever it wants to us

ImplementationImplementation
� Hardware traps to ring 0 permission-management kern el
� Ring 0 checks current-ring < entry-limit

� User code may be forbidden to call ring 0 directly
� Checks call address is a legal entry point

� Less-privileged code can't jump into middle of a pr ocedure
� Sets current-ring to segment-ring

� Privilege elevation – after consulting callee's rul es
� Runs procedure call



15-410, S'0850

Multics Domain Switching

current-ring < mincurrent-ring < min
� Calling a less-privileged procedure

ImplementationImplementation
� Trap to ring 0 permission-management kernel
� Ring 0 copies “privileged” procedure call parameter s

� Must be in low-privilege segment for callee to acce ss
� Sets current-ring to segment-ring

� Privilege lowering – callee gets r/o access to care fully 
chosen privileged state

� Runs procedure call



15-410, S'0851

Multics Ring Architecture

Does this look familiar?Does this look familiar?
� It should really remind you of something...

BenefitsBenefits
� Core security policy small, centralized
� Damage limited vs. Unix “superuser”' model

ConcernsConcerns
� Hierarchy  � least privilege  
� Requires specific hardware
� Performance (maybe)



15-410, S'0852

More About Multics

Back to the futureBack to the future
� Symmetric multiprocessing
� Hierarchical file system (access control lists)
� Memory-mapped files
� Hot-pluggable CPUs, memory, disks
� 1969!!!

Significant influence on UnixSignificant influence on Unix
� Ken Thompson was a Multics contributor

The One True OSThe One True OS
� In use 1968-2000
� www.multicians.org



15-410, S'0853

Mentioning EROS

Text mentions Hydra, CAPText mentions Hydra, CAP
� Late 70's, early 80's
� Dead

EROS (“Extremely Reliable Operating System”)EROS (“Extremely Reliable Operating System”)
� UPenn, Johns Hopkins
� Based on commercial GNOSIS/KeyKOS OS
� www.eros-os.org
� “Arguably less dead” (see below)



15-410, S'0854

EROS Overview

““ Pure capability” systemPure capability” system
� “ACLs considered harmful”

““ Pure principle system”Pure principle system”
� Don't compromise principle for performance

Aggressive performance goalAggressive performance goal
� Domain switch ~100X procedure call

Unusual approach to capability-bootstrap problemUnusual approach to capability-bootstrap problem
� Persistent processes!



15-410, S'0855

Persistent Processes??

No such thing as rebootNo such thing as reboot

Processes last “forever” (until exit)Processes last “forever” (until exit)

OS kernel checkpoints system state  to diskOS kernel checkpoints system state  to disk
� Memory & registers defined as cache of disk state

Restart restores system state into hardwareRestart restores system state into hardware

““ Login” Login” reconnectsreconnects  you to your processes you to your processes



15-410, S'0856

EROS Objects

Disk pagesDisk pages
� capabilities: read/write, read-only

Capability nodesCapability nodes
� Arrays of capabilities

NumbersNumbers
� Protected capability ranges

� “Disk pages 0...16384”

Process – executable nodeProcess – executable node



15-410, S'0857

EROS Revocation Stance

ReallyReally  revoking access is hard revoking access is hard
� The user could have copied the file

Don't give out real capabilitiesDon't give out real capabilities
� Give out proxy capabilities
� Then revoke however you wish

VerdictVerdict
� Not really satisfying
� Unclear there is a better answer

� Palladium/“trusted computing” isn't clearly better



15-410, S'0858

EROS Quick Start

http://www.eros-os.org/http://www.eros-os.org/
� essays/

� reliability/paper.html
� capintro.html
� wherefrom.html
� ACLSvCaps.html

Current statusCurrent status
� EROS code base transitioned to CapROS.org 
� Follow-on research project at Coyotos.org



15-410, S'0859

Concept Summary

ObjectObject
� Operations

DomainDomain
� Switching

CapabilitiesCapabilities
� Revoking is hard, see text

““ Protection” vs. “security”Protection” vs. “security”
� Protection is what our sysadmin hopes  is happening...


