INTRODUCTION LFL INSERT LFL DELETE ALc RCU TRADEOFFS CONCLUSION

00000 o [e] 00000 [e]
00000000000 0000 00000 [e]
(e]e} 00000000 0000000 oo
000000000 000000

Lock-free Programming

Nathaniel Wesley Filardo

April 16, 2008

1/79

INTRODUCTION LFL INSERT LFL DELETE ALc RCU

00000

(o] (e} Q0000
00000000000 0000 00000
[e]e) 00000000 0000000
000000000 000000
Outline
Introduction

Lock-Free Linked List Insertion
Lock-Free Linked List Deletion
Some real algorithms?
Read-Copy-Update Mutual Exclusion

Tradeoffs

TRADEOFFS
o

[e]
oo

CONCLUSION

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION

00000 (o] (e} Q0000 (e}
00000000000 0000 00000 (e}
[e]e) 00000000 0000000 [e]e)
000000000 000000
Introduction

e Suppose some madman says “We shouldn’t use locks!”

e You know that this results (eventually!) in inconsistent
data structures.
e Loss of invariants within the data structure
e Live pointers to dead memory
e Live pointers to undead memory (Hey, my type changed!
Stop poking there!)

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION

®0000 (o] (e} Q0000 (e}
00000000000 0000 00000 (e}
[e]e) 00000000 0000000 [e]e)
000000000 000000
Introduction

Locks Can Be Expensive

Consider XCHG style locks which use
while(xchg(&locked, LOCKED) == LOCKED)
as their core operation.

We could spend a long time here waiting or yielding. . .

This implies we'll have very high latency on contention. . .

Locks by definition reduce parallelism.

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION

0e000 (o] (e} Q0000 (e}
00000000000 0000 00000 (e}
[e]e) 00000000 0000000 [e]e)
000000000 000000
Introduction

Locks Can Be Expensive

e That is, if N people are contending for a lock, N — 1 of
them are yield()ing, just wasting time.

o It would be nice if they could all work at once ...

e ...being careful not to step on each other when there
was actually a problem.

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION

0000 (o] (e} Q0000 (e}
00000000000 0000 00000 (e}
[e]e) 00000000 0000000 [e]e)
000000000 000000
Introduction

Locks Can Be Expensive

e For a large data structure, we would like multiple local
(independent) operations to be allowed concurrently.

e e.g. “lookup” and “insert” in parallel threads
e Can somewhat get this with a data structure full of locks
(think: big tree)
e .. .but order requirements mean that threads can still pile
up while trying to get to their local site.

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION

[e]e]e] e}

(o] (e} Q0000 (e}
00000000000 0000 00000 (e}
[e]e) 00000000 0000000 [e]e)
000000000 000000

Introduction

Locks Can Be Expensive

e Instead of a lock around a tree, we could have a tree with

locks:
|ROOT LOCK |
B LOCK |
A LOCK | C LOCK |

e The protocol is lock the root, then (lock child & unlock
parent) as you go down.
e This kind of lock handoffis a very common design.
o Here every time a thread decides to go down one branch,
it gets out of roughly half of the others’ ways.

9

INTRODUCTION LFL INSERT LFL DELETE ALc RCU

TRADEOFFS CONCLUSION
0000e o] o 00000 o
00000000000 0000 00000 o
00 00000000 0000000 00
000000000 000000
Introduction

o But let's see what we can do without any locks at all.

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION

00000 o [e] 00000 [e]
00000000000 0000 00000 [e]
(e]e} 00000000 0000000 oo

000000000 000000

Lock-Free Linked List Insertion

Lock-Free Linked List Node

Insertion into a Linked List Without Locks
Review of Atomic Primitives

Insertion into a Lock-free Linked List

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION

00000 (] [e] 00000 [e]
00000000000 0000 00000 [e]
(e]e} 00000000 0000000 oo

000000000 000000

Lock-Free Linked List Node

o Node definition is simple:
label t label
void* next

e When drawing, we'll use a shorthand:
label_t label = A PN
void* next = &B A &B

10 /79

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION

00000 o [e] 00000 [e]
00000000000 0000 00000 [e]
(e]e} 00000000 0000000 oo

000000000 000000

Insertion into a Linked List Without Locks
Insertion Code

insertAfter(after, newlabel) {
//lockList();
new = newNode(newlabel);
prev = findLabel(after);
new—->next = prev->next;
prev->next = new,
//unlockList () ;

11/79

INTRODUCTION LFL INSERT LFL DELETE ALG RCI

TRADEOFFS CONCLUSION
00000 o o 00000 o
0®000000000 0000 00000 o
00 00000000 0000000 00
000000000 000000

Insertion into a Linked List Without Locks
Good trace in 410 notation

insertAfter(A,B) | insertAfter(A,C)
prev = &A

B.next=A.next
A.next=B

prev = &A
C.next=A.next
A.next=C

INTRODUCTION
00000

LFL INSERT LFL DELET!

o [e]
00e00000000 0000
(e]e} 00000000

000000000 000000

ALG RCU TRADEOFFS
00000 o
00000 o
0000000 00

Insertion into a Linked List Without Locks
Race trace in 410 notation

insertAfter(A,B) | insertAfter(A,C)
prev = &A
B.next = A.next
prev = &A
C.next = A.next
A.next = B A.next = C

CONCLUSION

o Either of these assignments makes sense in isolation, but
one of them will override the other!

INTRODUCTION LFL INSERT LFL DELETE ALc RCU

TRADEOFFS CONCLUSION
00000 o o 00000 o
00080000000 0000 00000 o
00 00000000 0000000 00
000000000 000000

Insertion into a Linked List Without Locks
Precondition

A &D

e One list, two items on it: A and D.

14 /79

INTRODUCTION LFL INSERT LFL DELETE ALG RCI

TRADEOFFS CONCLUSION
00000 o o 00000 o
00008000000 0000 00000 o
00 00000000 0000000 00
000000000 000000

Insertion into a Linked List Without Locks
First step

C NULL

Cwip
B WL

B NULL

e Two threads get two nodes, B and C, and want to insert.

new = newNode(B); || new = newNode(C);
prev = &A prev = &A

INTRODUCTION LFL INSERT LFL DELETE ALG RCU

TRADEOFFS CONCLUSION
00000 o o 00000 o
00000@00000 0000 00000 o
00 00000000 0000000 00
000000000 000000

Insertion into a Linked List Without Locks
Second step

e Two threads point their respective nodes C and B into
list at D

’ B.next=&D H C.next=&D ‘

INTRODUCTION LFL INSERT LFL DELETE ALG RCU

TRADEOFFS CONCLUSION
00000 o o 00000 o
000000@0000 0000 00000 o
00 00000000 0000000 00
000000000 000000

Insertion into a Linked List Without Locks
One thread goes

o Suppose the thread owning C completes its assignment
first.

’ H A.next=&C ‘

79

INTRODUCTION LFL INSERT LFL DELETE ALG RCU

TRADEOFFS CONCLUSION
00000 o o 00000 o
0000000e000 0000 00000 o
00 00000000 0000000 00
000000000 000000

Insertion into a Linked List Without Locks
And the other. . .

e And the other (owning B) completes second, overwriting

’ A.next=&B H ‘
e Node C is unreachable!

INTRODUCTION LFL INSERT LFL DELETE ALG RC

TRADEOFFS CONCLUSION
00000

o [e] 00000 [e]
00000000800 0000 00000 [e]
(e]e} 00000000 0000000 oo

000000000 000000

Insertion into a Linked List Without Locks
What went wrong?

1. Thread B observed that &A->next == D
2. Thread C observed that &A->next == D
3. Thread C changed &A->next “from D to C"

4. Thread B changed &A->next “from D to B"
e But it was C not D!

e How to fix that?
e Give B and C critical sections and serialize them

e Then there is no gap between observation and changing
e But that requries locking, which we are avoiding...

e Take two: assume mistakes are rare, clean up afterward!

INTRODUCTION LFL INSERT LFL DELETE ALG RC

TRADEOFFS CONCLUSION
00000

o [e] 00000 [e]
00000000080 0000 00000 [e]
(e]e} 00000000 0000000 oo
000000000 000000

Insertion into a Linked List Without Locks
The Lock Free Approach

while(not done)

Prepare data structure update (e.g. new node)
Determine preconditions for the update
ATOMICALLY
if(preconditions hold)
make update
done =1

e Unlike critical sections, this is not (really) bounded
e Could keep encountering trouble over and over...
e But as long as threads “almost always” don't do
overlapping updates...

e Then we gain in parallelism by not locking the data
structure.

INTRODUCTION

00000

LFL INSERT LFL DELET!
o o
0000000000e 0000

00 00000000

000000000 000000

ALG RCT
00000 o
00000 o
0000000 00

Insertion into a Linked List Without Locks

e Qur assignments were really supposed to be

TRADEOFFS

insertAfter(A,B) insertAfter(A,C)
while(!done) while(!done)
ATOMICALLY ATOMICALLY
if A->next == if A->next ==
A->next = B A->next = C
else else
done = 1 done = 1

CONCLUSION

o If we do that, one critical section will safely fail out and

tell us to try again.

e How do we do this ATOMICALLY without locking?

21/79

INTRODUCTION LFL INSERT LFL DELETE ALe RCU TRADEOFFS

00000 o [e] 00000 [e]
00000000000 0000 00000 [e]
eO0 00000000 0000000 oo

000000000 000000

Review of Atomic Primitives

e Remember our old friend XCHG?

e XCHG (ptr, val) atomically:
old_val = *ptr;
*ptr = val;
return old_val;

CONCLUSION

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS

00000 o [e] 00000 [e]
00000000000 0000 00000 [e]
oce 00000000 0000000 oo

000000000 000000

Review of Atomic Primitives

e XCHG (ptr, val) atomically:
old_val = *ptr;
*ptr = val;
return old_val;

e CAS (ptr, expect, new) atomically:
old_val = *ptr;
if (old.val == expect)
*ptr = new;
return old_val;

CONCLUSION

e Note that CAS is no harder - it's a read and a write; the

logic is free (it's on the CPU).

INTRODUCTION

00000

LFL INSERT LFL DELET!

o [e]
00000000000 0000
(e]e} 00000000

900000000 000000

ALG RCT
00000 o
00000 o
0000000 00

Insertion into a Lock-free Linked List

e Our assignments were really supposed to be

TRADEOFFS

insertAfter(A,B) insertAfter(A,C)
while(!done) while(!done)
ATOMICALLY ATOMICALLY
if A->next == if A->next ==
A->next = B A->next = C
else else
done = 1 done = 1

e This translates into

while(!done)
n = A->next;

done = (CAS(&A->next,n,B) == n)

e CAS will let us do assignment when the data matches

and will bail out when it doesn't!

CONCLUSION

24 /79

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION

00000 o [e] 00000 [e]
00000000000 0000 00000 [e]
(e]e} 00000000 0000000 oo
0@0000000 000000

Insertion into a Lock-free Linked List
Simple case, setup

A &D

e Some thread constructs the bottom node C; wishes to
place it between the two above, A and D.

e new = newNode(C);
e prev = findLabel(A); /* == &A */

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS

00000 o [e] 00000 [e]
00000000000 0000 00000 [e]
(e]e} 00000000 0000000 oo

00@000000 000000

Insertion into a Lock-free Linked List
Simple case, first step

C &D

e Thread points C node’s next into list at D.

e C.next = A.next;

CONCLUSION

INTRODUCTION LFL INSERT LFL DELETE ALc RCU TRADEOFFS CONCLUSION

00000 o [e] 00000 [e]
00000000000 0000 00000 [e]
(e]e} 00000000 0000000 oo

000@00000 000000

Insertion into a Lock-free Linked List
Simple case, second step

e CAS(&A.next, &D, &C);

27/79

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION

00000 o [e] 00000 [e]
00000000000 0000 00000 [e]
(e]e} 00000000 0000000 oo

0000@0000 000000

Insertion into a Lock-free Linked List
Race case, setup

A &D

e Two threads get their respective nodes B and C.

new = newNode(B); || new = newNode(C);
prev = &A prev = &A

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION

00000 o [e] 00000 [e]
00000000000 0000 00000 [e]
(e]e} 00000000 0000000 oo

00000e000 000000

Insertion into a Lock-free Linked List
Race case, first step

e Both set their new node's next pointer.

’ B.next=&D H C.next=&D ‘

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS

00000 o [e] 00000 [e]
00000000000 0000 00000 [e]
(e]e} 00000000 0000000 oo

000000e00 000000

Insertion into a Lock-free Linked List
Race case, first thread

e Thread C goes first ...

| | cAS(&A->next, D, O |

CONCLUSION

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION

00000 o [e] 00000 [e]
00000000000 0000 00000 [e]
(e]e} 00000000 0000000 oo
000000080 000000

Insertion into a Lock-free Linked List
Race case, second thread

CAS prev—>next,new—>next,new)
&D

e And the other (owning B). ..
| CAS(&A->next, D, B) | |

e Fails since A->next == C, not D.

e So this thread tries again.

3 79

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS

00000 o [e] 00000 [e]
00000000000 0000 00000 [e]
(e]e} 00000000 0000000 oo

00000000 e 000000

Insertion into a Lock-free Linked List

e Rewrite the insertion code to be
insertAfter(after, newlabel) {
new = newNode(newlabel);
do {
prev = findLabel(after);
expected = new->next = prev->next;
} while
(CAS(&prev->next, expected, new)
= expected);

CONCLUSION

INTRODUCTION LFL INSERT
00000 o
00000000000
00

000000000

e It works!

e No locks!

LFL DELETE ALG
[]

0000

00000000

000000

That’s great!

RCT
00000
00000
0000000

TRADEOFFS
o

[e]
oo

e Can simultaneously scan and modify the list!
e Can simultaneously modify and modify the list!
e All those while loops... (retrying over and over?)
e Remember, mutexes had while loops too...
e maybe even around CAS()!

e Here, whenever we retry we know somebody else got

work done!

e Are we done?

CONCLUSION

e Most data structures need to support deletion as well . ..

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION

00000 o [e] 00000 [e]
00000000000 @000 00000 [e]
(e]e} 00000000 0000000 oo

000000000 000000

Deletion is easy?

e Suppose we have

¢ And want to get rid of C.
e So CAS(&A.next, &C, &E)

3 79

INTRODUCTION LFL INSERT LFL DELETE ALc RCU TRADEOFFS CONCLUSION

00000 o [e] 00000 [e]
00000000000 0@00 00000 [e]
(e]e} 00000000 0000000 oo

000000000 000000

Deletion is easy?

¢ Now we have

e Great, looks like deletion to mel

35/79

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION

00000 o [e] 00000 [e]
00000000000 [ele]]o) 00000 [e]
(e]e} 00000000 0000000 oo

000000000 000000

Deletion is easy?
Continued

e But imagine there was another thread accessing C (say,
scanning the list).

e \We don’'t know when that thread is done with C!

e So we can never free(C);

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION

00000 o [e] 00000 [e]
00000000000 oooe 00000 [e]
(e]e} 00000000 0000000 oo

000000000 000000

Deletion is easy?
What’s to be done?

Deletion turns out to be connected with the infamous
“ABA problem.”

We need some way to reclaim that memory for reuse..

(Some implementations cheat and assume as
stop-the-world garbage collector.)

Doing this honestly is remarkably tricky!

37 /79

INTRODUCTION LFL INSERT LFL DELETE

00000

o [e]
00000000000 0000

(e]e} 00000000
000000000 000000

ALG RCU TRADEOFFS
00000 o
00000 o
0000000 00

ABA Problem

o A problem of confused identity

CONCLUSION

global = malloc(sizeof(Foo)) //0x1337
local; = global local, = global
global = NULL
free(localy) //0x1337
global = malloc(sizeof(Foo)) //0x1337

/* Validity check */
if (global == local,)
global->foo_baz = . ..

e Even though local, and global might share the same

value, they don't really mean the same thing.

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION
00000

o [e] 00000 [e]
00000000000 0000 00000 [e]
(e]e} 0O®@000000 0000000 oo
000000000 000000

ABA Problem

o We begin with an innocent linked list:

head*%A &BHB ‘

o Where head is a a global pointer to the list.

e We're just going to do operations at the head — treating
the list like a stack.

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION

00000 o] o] 00000 o]
00000000000 0000 00000 o]
[e]e] 00e00000 0000000 [e]e]
000000000 000000
ABA Problem
Pop

We begin with a linked list:

head —>{A &Bl—B -]

e Removing the head looks like
lhead = head /*x == &A *x/
lnext = lhead->next /* == &B */

CAS(head, lhead, lnext);

e If the CAS is successful, we are done, and the list is
lhead head —>B -]
e If not, start over.

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION

00000 o [e] 00000 [e]
00000000000 0000 00000
(e]e}

[e]
O00e0000 0000000 oo
000000000 000000

ABA Problem
Push

We begin with a linked list and private item

A NULL head—>B -]

Inserting at the head looks like

lhead = head /x == &B */

A.next = lhead /* A points at B */
CAS(head, lhead, &A);

If the CAS is successful, we are done, and the list is

head —{ A &B—B]

If not, start over.

11/79

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION

00000 o [e] 00000 [e]
00000000000 0000 00000 [e]
(e]e} 0O000@000 0000000 oo
000000000 000000

ABA Problem
And now it breaks!

Here's a 30,000 foot look at how this is going to break.

Process 1 | Process 2
P Pop
o Use memory
p Push
BANG!

e In words: An extremely, agonizingly slow pop is racing
against a pop and a push, with some scribbling in the
middle.

o All operations are going to be aimed at the same node, A.
e The end is catastrophe.

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION

00000 o [e] 00000 [e]
00000000000 0000 00000 [e]
(e]e} 0000000 0000000 oo
000000000 000000

ABA Problem

o The first thread gets one instruction into its pop, while

e The second thread completes its pop operation:

head*%A &B}—%B ‘
hl = head h2 = head == &A
n2 = h2->next == &B
CAS(head, h2, n2) Success!
e The world now looks like

h1 —{A &B) head

INTRODUCTION LFL INSERT
00000 o
00000000000
00

000000000

LFL DELETE ALG RCT

[e] 00000
0000 00000
00000080 0000000

000000

ABA Problem

TRADEOFFS
o

[e]
oo

e Now the faster thread is going to do something to the
node it just popped, and then try to push it back on.

hi A &B

head

CONCLUSION

A.next = NULL;

Use memory

nl = hl->next == NULL
h2 = head; == &B
A.next = h2; == &B

CAS(head, h2, &A) | Success!

hl1 —— NULL

head —> A &Bf—B

[CAS(head, hi, nl) |

| Suc... hm! |

head — NULL [A &B}—B

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION

00000 o [e] 00000 [e]
00000000000 0000 00000 [e]
(e]e} O000000e 0000000 oo

000000000 000000

ABA Problem

o The left thread missed its chance to be notifed of having
stale data.
¢ Notice that the choice of writing NULL was arbitrary.
e In particular, we might have instead done a much larger
series of operations.
e All that matters is that A ended up back on the list head
when Thread 1 was CAS-ing.

¢ In punishment, the datastructure is now broken!

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION

00000 [e] o] 00000 o]
00000000000 0000 00000 o]
[e]e] 00000000 0000000 [o]e]
000000000 00000
Fizing ABA

e |t turns out that we need a more sophisticated delete
(and maybe insert and lookup!) function. Look at
[Fomitchev and Ruppert(2004)] or [Michael(2002a)] (or
others) for more details.

o Generation counters are a simple way to solve ABA

e Let's replace all pointers with
struct {
void * p; /* Pointer */
unsigned int c; /* Counter */
}s

e This will allow a “reasonably large” number of pointer

updates before we have to worry.

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION

00000 [e] o] 00000 o]
00000000000 0000 00000 o]
[e]e] 00000000 0000000 [o]e]
000000000 0e0000
Fizing ABA

e Suppose we had a primitive which let us write things like
ATOMICALLY
if ((A.next.p == &C) && (A.next.version == 4))
A.next.p = &D
A.next.version = 5

7/79

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION

00000 [e] o] 00000 o]
00000000000 0000 00000 o]
[e]e] 00000000 0000000 [o]e]
000000000 00e000
Fizing ABA

o Like CAS, we want a CAS2, which operates on two words
at once:
CAS2(ptr[2], expect[2], new[2]) atomically:
if (ptr[0] !'= expect[0] || ptr[1] != expect[1])
return {ptr[0], ptrlil};
else
ptr[0] = new[0]; ptr[1]= new[1];
return { expect[0], expect[1] };
e CAS2 looks more expensive than CAS?
e Two reads, two writes.
e With luck, it's one cache line; without, it could be four.
e May be (1 + ¢) times as hard as CAS...
e May be oo times as hard as CAS...

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION

Fixing ABA
h, 0 A &B,0 B]
hl = head.p h2 = head.p == &A
n2 = h2->next.p == &B
c2 = head.c == 0

CAS2(head,{h2,c2},{n2,c2+1}) | Success!

hip——{A &B,0| hi—{B]

INTRODUCTION LFL INSERT LFL DELETE ALG RCT TRADEOFFS CONCLUSION

00000 [e] o] 00000 o]
00000000000 0000 00000 o]
[e]e] 00000000 0000000 [o]e]
000000000 0000e0
Fizing ABA

hip—{A &B,0 head, 1

nl = hl->next.p
cl = head.c

h2 = head.p;

c2 = head.c;

A.next.p = h2;

A.next.c = 0;
CAS2(head,{h2,c2},{&A,c2+1})

head2—{A &80} B]

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION

00000 [e] o] 00000 o]
00000000000 0000 00000 o]
[e]e] 00000000 0000000 [o]e]
000000000 00000e
Fizing ABA

head2——~{A &80} B]

Now when the left process does
CAS2(head,{h1,c1},{nl,c1+1}), it's going to be expecting
head's generation counter to be at value c1, or 1. Since it is
now at 2, the CAS2 will fail.

INTRODUCTION LFL INSERT LFL DELETE AL RCU TRADEOFFS CONCLUSION

00000 o [e] 00000 [e]
00000000000 0000 00000 [e]
(e]e} 00000000 0000000 oo

000000000 000000

Some real algorithms?

e [Michael(2002a)] specifies a CAS-based lock-free
list-based sets and hash tables using a technique called
SMR to solve ABA and allow reuse of memory.

e SMR actually solves ABA as a side effect of safely
reclaiming memory. Instead of blocking the writer until
everybody leaves a critical section, it can efficiently scan
to see if threads are interested in a particular chunk of
memory.

e Their performance figures are worth looking at.
Summary: fine-grained locks (lock per node) show
linear-time increase with # threads, their algorithm
shows essentially constant time.

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION

00000

o [e] 90000 [e]
00000000000 0000 00000 [e]
(e]e} 00000000 0000000 oo
000000000 000000

Read-Copy-Update Mutual Fxclusion
Preliminaries

e The ABA problems would all be solved if we could force
everybody who might have read what is now a stale
pointer to complete.

e Phrased slightly differently, we need to separate the

memory update phase from the reclaim (free()) phase.

e And ensure that no readers hold a critical section that
might see the update and reclaim phases.

e Seeing one or the other is OK!

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION

00000 o [e] [e] lele]e} [e]
00000000000 0000 00000 [e]
(e]e} 00000000 0000000 oo

000000000 000000

Read-Copy-Update Mutual Fxclusion
Preliminaries

e Read-Copy-Update (RCU,
[Wikipedia(2006a), McKenney(2003)]) uses techniques
from lock-free programming.

e |s used in several OSes, including Linux.

e It's a bit more complicated than the examples given here
and not truly lock-free, but certainly interesting.

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION

00000 [e] o] 00e00 o]
00000000000 0000 00000 o]
[e]e] 00000000 0000000 [o]e]
000000000 000000
Read-Copy-Update Mutual Fxclusion
Preliminaries

e Looks like a reader-writer lock from 30, 000 ft.
o Key observations:
e Many more readers than writers.
e Readers frequently can avoid blocking inside the critical
section.
e Readers want to see a consistent datastructure.
e The ABA problems would all be solved if we could force
everybody who might have read what is now a stale
pointer to complete.

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION

00000 o [e] [e]e]e] lo} [e]
00000000000 0000 00000 [e]
(e]e} 00000000 0000000 oo

000000000 000000

Read-Copy-Update Mutual Fxclusion
Preliminaries

e Many more readers than writers.

e So we should make sure that the readers don't have to
do much.

e Kind of like a rwlock.

o Readers frequently can avoid blocking inside the critical
section.

e Required property of RCU readers.

e We'll see why this is important in a bit.

e Readers want to see a consistent datastructure.

e Not all consistency guarantees need to be kept, but, for
example, we want to avoid use-after-free and the
possibility of faulting.

e But it might be the case that we let node->next->prev
I= node as readers only use these pointers to traverse.

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION

00000 o [e] [e]e]ele] } [e]
00000000000 0000 00000 [e]
(e]e} 00000000 0000000 oo

000000000 000000

Read-Copy-Update Mutual Fxclusion
Preliminaries

o Disclaimer: function names have been changed from, e.g.,
the Linux implementation, to make the meanings more
clear.

¢ Disclaimer 2: RCU comes in many flavors - the one here

is a small toy model but works on real hardware (like
Pebbles).

INTRODUCTION LFL INSERT LFL DELET! ALG RCU

TRADEOFFS CONCLUSION
00000

o [e] 00000 [e]
00000000000 0000 @0000 [e]
(e]e} 00000000 0000000 oo
000000000 000000

Read-Copy-Update Mutual Fxclusion
API

¢ Reader critical section functions.
e void rcu_read_lock(void);
e void rcu_read unlock(void);
e Note the absence of parameters (how odd!).
e Accessor functions:
e void * rcu_fetch(void *); is used to fetch a pointer
from an RCU protected data structure.
e void * rcu assign(void *, void *); is used to
assign a new value to an RCU protected pointer.
¢ Synchronization points:

e void rcu_synchronize(void); is used once a writer
is finished to signal that updates are complete.
e Moves from “update” to “reclaim” phase.

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION
00000

o [e] 00000 [e]
00000000000 0000 [e] lele]e} [e]
(e]e} 00000000 0000000 oo
000000000 000000

Read-Copy-Update Mutual Fxclusion
API: Reader’s View

e Suppose we have a global list, called 1ist, that we want
to read under RCU.
e The code for iteration looks like
rcu_read_lock();
list_head_t *1list = rcu_fetch(list);
list_node_t *node = rcu_fetch(llist->head);
while(node != NULL) {
/* Do something reader-like */
node = rcu_fetch(node->next) ;

}

rcu_read unlock();

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION
00000

o [e] 00000 [e]
00000000000 0000 [e]e] le]e} [e]
(e]e} 00000000 0000000 oo
000000000 000000

Read-Copy-Update Mutual Fxclusion
API: Writer’s View

e Suppose we want to delete the head of the same global
list, 1ist.
o We need to give it a writer exclusion mutex, list_wlock.
void delete head of list() {
list_node_t *head;
mutex_lock(&list_wlock); // No other writers
head = list->head;
list_node_t *next = head->next;
rcu assign(list, next);
rcu_synchronize() ;
mutex_unlock(&list_wlock);
free(head); /* Reclaim phase */

}

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION

00000 o [e] 00000 [e]
00000000000 0000 [e]e]e] le} [e]
(e]e} 00000000 0000000 oo
000000000 000000

Read-Copy-Update Mutual Fxclusion
API: Summary

e This is kinda like a rwlock:
e |t allows an arbitrary number of readers to run against
each other.
e |t prevents multiple writers from writing at once.
e It is absolutely unlike a rwlock because
e readers and writers do not exclude each other!

INTRODUCTION LFL INSERT LFL DELETE ALG RCU

TRADEOFFS CONCLUSION
00000 o o 00000 o
00000000000 0000 0000e® o
00 00000000 0000000 00
000000000 000000

Read-Copy-Update Mutual Fxclusion
API: Wait, WHAT?

o Readers can run alongside writers! There's no mechanism
in the reader to serialize against the writer! See:

CPU 1 (reader) CPU 2 (writer)
rcu_read_lock(); mutex_lock(...);
1llist = rcu_fetch(list);

rcu assign(list, new);
rcu_synchronize() ;

rcu_fetch(llist->head);

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION
00000

o [e] 00000 [e]
00000000000 0000 00000 [e]
(e]e} 00000000 @000000 oo

000000000 000000

Read-Copy-Update Mutual Fxclusion
Implementation: Key Ideas

e The deletion problem, and ABA, was a problem of not
knowing when nobody had a stale reference.
o If
e readers agree to drop all references in bounded time

e AND writers can tell when readers have dropped
references

e Then we know when it is safe to reclaim (i.e. free())
memory.

e Being safe for reclaim is exactly the same as being safe
for reuse.

INTRODUCTION

00000

LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION

o [e] 00000 [e]
00000000000 0000 00000 [e]
(e]e} 00000000 0@00000 oo

000000000 000000

Read-Copy-Update Mutual Fxclusion
Implementation: Approximation

Want:

e readers agree to drop all references in bounded time
e AND writers can tell when readers have dropped
references
You can imagine that there's an array of reading[i]
values out there, with each thread having its own index...

Each reader sets reading[me] = 1, reads, then sets
reading[me] = 0.

The writer then scans the array looking for all flags to be
0.

When this happens, the writer knows that no readers
have stale references, and all is well!

64 /79

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION

00000 o [e] 00000 [e]
00000000000 0000 00000 [e]
(e]e} 00000000 00e0000 oo

000000000 000000

Read-Copy-Update Mutual Fxclusion
Implementation

¢ So how does RCU actually do this?

e rcu read lock() simply disables the local CPU'’s
preemptive scheduler.

e This is where the requirement that readers not block
comes from.

e rcu assign() inserts a write memory barrier (“write
fence”) to force all writes in the out-of-order buffers to be
made visible before it does the assignment requested.

e rcu_fetch() is just a dereference on most architectures.

e Because most architectures ensure coherency.
e There are exceptions (notably, DEC ALPHA systems).

INTRODUCTION
00000

LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION

o [e] 00000 [e]
00000000000 0000 00000 [e]
(e]e} 00000000 000@000 oo

000000000 000000

Read-Copy-Update Mutual Fxclusion
Implementation

Given all of this, what does rcu_synchronize() do?
It waits until every CPU undergoes a context switch!
e Could just have a context switch counter per CPU and
wait for each to fire, or...
e Ensure that the thread calling synchronize gets run on
every CPU before the synchronize returns (using
something like move me_to_cpu(int cpunum) ;)

Because readers are non-preemptible, this will force all
critical sections that began before the synchronize to
complete before the writer can enter reclaim phase.

That enables safe reclaim and as a side-effect solves the
ABA problem for us!

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS

00000 o [e] 00000 [e]
00000000000 0000 00000 [e]
(e]e} 00000000 0000e00 oo

Read-Copy-Update Mutual Fxclusion
Pictures: Writer view

o Let's again take a linked list, this time a doubly linked
one.

head —{A[___|B[._|C}k—tail
o Now suppose the writer acquires the write lock and
updates to delete B:

head .. tail

o Now the writer synchronizes, forcing all readers with
references to B out of the list. Only then can B be

reclaimed!
head —A[__|Cl— tail

CONCLUSION

67 /79

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS

00000 o [e] 00000 [e]
00000000000 0000 00000 [e]
(e]e} 00000000 0000080 oo

000000000 000000

Read-Copy-Update Mutual Fxclusion
Pictures: Reader View

e Looking at that again, from the reader’s side now.
Originally

head —{A[___|B[__|C}k—tail

e The writer first sets it to

head E_E tail

e And then

head .. tail

CONCLUSION

INTRODUCTION
00000

LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION

o [e] 00000 [e]
00000000000 0000 00000 [e]
(e]e} 00000000 000000e oo

000000000 000000

Read-Copy-Update Mutual Fxclusion
Pictures

The writer forced memory consistency (fencing) between
each update.

So each reader's dereference occurred entirely before or
entirely after each write.

So the reader’s traversal in either direction is entirely
consistent!

Though moving back and forth might expose the writer’s
action.

But it’s OK, because we'll just see a disconnected node.
It's not gone yet, just disconnected.

It won't be reclaimed until we drop our critical section.

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION

00000 [e] o] 00000 []
00000000000 0000 00000 o]
[e]e] 00000000 0000000 [o]e]
000000000 000000
Tradeoffs

What Have We Learned?

o We can replace fixed-time lock-based critical sections with
“almost-always-fixed-time" compare-and-swap loops...
e Note that getting the lock was not fixed-time, just the
critical section.
e CAS is a kind of critical mini-section in hardware.

o Because many threads may have references into a data
structure, knowing when something has no references is
both very important and very difficult.

e But all is not lost!
e Generation counters and RCU offer paths to salvation.
e There are others, for the curious.

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION

00000 [e] o] 00000 o]
00000000000 0000 00000 []
[e]e] 00000000 0000000 [o]e]
000000000 000000
Tradeoffs

Write Your Own?

It's extremely hard to roll your own lockfree algorithm.

But moreover, it's almost impossible to debug one.

Thus all the papers are long not because the algorithms
are hard, ...

... but because they prove the correctness of the
algorithm so they can skip the debugging step!

7 79

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION

00000 o [e] 00000 [e]
00000000000 0000 00000 [e]
(e]e} 00000000 0000000 e0

000000000 000000

Tradeoffs
Lockfree vs. Locking.

e Most lock-free algorithms increase the number of atomic
operations, compared to the lockful variants.

e Thus we starve processors for bus activity on bus-locking
systems.

e On systems with cache coherency protocols, we might
livelock with no processor able to make progress due to
cacheline stealing and high transit times.

e Nobody can get all the cachelines to execute an
instruction before a request comes in and and steals one
of the ones they had.

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS CONCLUSION

00000 [e] o] 00000 o]
00000000000 0000 00000 o]
[e]e] 00000000 0000000 oe
000000000 000000
Tradeoffs

Lockfree vs. Locking.

e Interestingly, RCU tends to decrease the number of
atomic operations.

e |t can because it requires readers to be non-blocking and
can interact with the scheduler.

e RCU requires the ability to force a thread to run on every
CPU or at least observe when every CPU has context
switched.

e Difficult to use RCU in userland!

e RCU still suffers a slowdown from cache line shuffling, but
will make progress due to there being only one writer.

INTRODUCTION LFL INSERT LFL DELETE ALG RCU TRADEOFFS

00000 (o] (e} Q0000 (e}
00000000000 0000 00000 (e}
[e]e) 00000000 0000000 [e]e)
000000000 000000
Conclusion

o Lock-free datastructures are extremely cool.

e Understanding them
e Uses clever hardware features
e This is probably good for one's soul anyway.
e Hardware is only going to get more “clever.”
e Leads to real-world tools like RCU.
e Gives a topic for conversation at parties.

e Lock-free algorithms proper have their place, but that
place is somewhat small.
e Generally more complex than standard lockful
algorithms.
e Much harder (“impossible?”) to debug.
e Usually used only when there is no other option.

CONCLUSION

ACKNOWLEDGEMENTS RECLAIM MISCELLANY

(e]e} [e]
[e]

[4 M. Fomitchev and E. Ruppert, PODC pp. 50-60 (2004),
http://www.research.ibm.com/people/m /michael /podc-
2002.pdf.

[4 M. M. Michael, SPAA pp. 73-83 (2002a),
http://portal.acm.org/ft_gateway.cfm?id=564881&type=pdf
& coll=GUIDE&dI=ACM& CFID=73232202
&CFTOKEN=1170757.

[4 Wikipedia, Read-copy-update (2006a),
http://en.wikipedia.org/wiki/Read-copy-update.

[4 P. McKenney (2003),
http://www.linuxjournal.com/article/6993.

[4 Wikipedia, Lock-free and wait-free algorithms (2006b),
http://en.wikipedia.org/wiki/Lock-free_and_wait-
free_algorithms.

ACKNOWLEDGEMENTS RECLAIM MISCELLANY

B

(e]e} [e]
[e]

Wikipedia, Non-blocking synchronization (2006c),
http://en.wikipedia.org/wiki/Non-
blocking_synchronization.

M. M. Michael, PODC pp. 1-10 (2002b),
http://www.research.ibm.com/people/m /michael /podc-
2002.pdf.

M. M. Michael, IEEECS pp. 1-10 (2004),
http: //www.research.ibm.com /people/m /michael /podc-
2002.pdf.

H. Sundell, in International Parallel and Distributed
Processing Symposium (IEEE, 2005), 1530-2075/05,
http://ieeexplore.ieee.org/iel5/9722/30685/01419843.pdf?
tp=&arnumber=1419843&isnumber=30685.

ACKNOWLEDGEMENTS RECLAIM MISCELLANY

(e]e} [e]
[e]

[4 P. Memishian, On locking (2006),
http://blogs.sun.com/meem/entry/on_locking.

ACKNOWLEDGEMENTS RECLAIM MISCELLANY
00 o
o

Acknowledgements

e Dave Eckhardt (deOu) has seen this lecture about as
often as | have, and has produced useful commentary on
every release.

e Bruce Maggs (bmm) for moral support and big-picture
guidance

e Jess Mink (jmink), Matt Brewer (mbrewer), and Mr.
Wright (mrwright) for being victims of beta versions of
this lecture.

e [Nobody on this list deserves any of the blame, but
merely credit, for this lecture. |

ACKNOWLEDGEMENTS RECLAIM
[Jo}
[e]

Full fledged deletion €9 reclaim

o Even though we might be able to solve ABA, it still
doesn’t solve memory reclaim!

e Imagine that instead of being reclaimed by the list, the
deleted node before had been reclaimed by something
else...

e A different list
o A tree
e For use as a thread control block

MISCELLANY
o

ACKNOWLEDGEMENTS RECLAIM MISCELLANY

oe [e]
[e]

Full fledged deletion €9 reclaim

What if we looked at ABA differently ...
It only matters if there is the possibility of confusion.
In particular, might demonstrate strong interest in things
that might confuse me

e Hazard Pointers (“Safe Memory Reclaimation” or just

“SMR") [Michael(2002b)] and [Michael(2004)]

e Wait-free reference counters [Sundell(2005)]
These are ways of asking “If I, Thread 189236, were to
put something here, would anybody be confused?”

This solves ABA, but really as a side effect: it lets us
reclaim address space (and therefore memory) because we
know nobody's using it!

ACKNOWLEDGEMENTS RECLAIM MISCELLANY

(e]e} [e]
o

The SMR Algorithm

e Every thread comes pre-equipped with a finite list of
“hazards”

e Memory reclaim involves scanning everybody's hazards to
see if there's a collision

e Threads doing reclaim yield() (to the objecting thread)
until the hazard is clear
o Difficulty
e Show that hazards can only decrease when deletions are
pending
e Show that deletions eventually succeed (can’t deadlock
on hazards)
e Managing the list of threads' hazards is difficult

ACKNOWLEDGEMENTS RECLAIM MISCELLANY

(e]e} o
[e]

Observation On Object Lifetime

Instance of a general problem [Memishian(2006)]:

Things get tricky when the object must go away. [...]
Any thread looking up the object — by definition —
does not yet have the object and thus cannot hold
the object’s lock during the lookup operation. [...]
Thus, whatever higher-level synchronization is used
to coordinate the threads looking up the object must
also be used as part of removing the object from
visibility.

	Introduction
	Locks Can Be Expensive

	Lock-Free Linked List Insertion
	Lock-Free Linked List Node
	Insertion into a Linked List Without Locks
	Review of Atomic Primitives
	Insertion into a Lock-free Linked List

	Lock-Free Linked List Deletion
	That's great!
	Deletion is easy?
	ABA Problem
	Fixing ABA

	Some real algorithms?
	Read-Copy-Update Mutual Exclusion
	Preliminaries
	API
	Implementation

	Tradeoffs
	What Have We Learned?
	Write Your Own?
	Lockfree vs. Locking.

	Conclusion
	Appendix
	Acknowledgements
	Memory Reclaimation
	Full fledged deletion & reclaim
	The SMR Algorithm

	Miscellany
	Observation On Object Lifetime

