
Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Lock-free Programming

Nathaniel Wesley Filardo

April 16, 2008

1 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Outline

Introduction

Lock-Free Linked List Insertion

Lock-Free Linked List Deletion

Some real algorithms?

Read-Copy-Update Mutual Exclusion

Tradeoffs

2 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Introduction

� Suppose some madman says “We shouldn’t use locks!”

� You know that this results (eventually!) in inconsistent
data structures.

� Loss of invariants within the data structure
� Live pointers to dead memory
� Live pointers to undead memory (Hey, my type changed!

Stop poking there!)

3 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Introduction
Locks Can Be Expensive

� Consider XCHG style locks which use
while(xchg(&locked, LOCKED) == LOCKED)

as their core operation.

� We could spend a long time here waiting or yielding. . .

� This implies we’ll have very high latency on contention. . .

� Locks by definition reduce parallelism.

4 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Introduction
Locks Can Be Expensive

� That is, if N people are contending for a lock, N − 1 of
them are yield()ing, just wasting time.

� It would be nice if they could all work at once . . .

� . . . being careful not to step on each other when there
was actually a problem.

5 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Introduction
Locks Can Be Expensive

� For a large data structure, we would like multiple local
(independent) operations to be allowed concurrently.

� e.g. “lookup” and “insert” in parallel threads

� Can somewhat get this with a data structure full of locks
(think: big tree)

� . . . but order requirements mean that threads can still pile
up while trying to get to their local site.

6 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Introduction
Locks Can Be Expensive

� Instead of a lock around a tree, we could have a tree with
locks:

ROOT

��

LOCK

B

yyrrrrrrrrrrr

%%LLLLLLLLLLLL LOCK

A LOCK C LOCK

� The protocol is lock the root, then (lock child & unlock
parent) as you go down.

� This kind of lock handoff is a very common design.

� Here every time a thread decides to go down one branch,
it gets out of roughly half of the others’ ways. 7 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Introduction

� But let’s see what we can do without any locks at all.

8 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Lock-Free Linked List Insertion

Lock-Free Linked List Node
Insertion into a Linked List Without Locks
Review of Atomic Primitives
Insertion into a Lock-free Linked List

9 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Lock-Free Linked List Node

� Node definition is simple:
label t label

void* next

� When drawing, we’ll use a shorthand:
label t label = A

void* next = &B
⇔ A &B

10 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Insertion into a Linked List Without Locks
Insertion Code

insertAfter(after, newlabel) {
//lockList();

new = newNode(newlabel);

prev = findLabel(after);

new->next = prev->next;

prev->next = new;

//unlockList();

}

11 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Insertion into a Linked List Without Locks
Good trace in 410 notation

insertAfter(A,B) insertAfter(A,C)

prev = &A
B.next=A.next

A.next=B

prev = &A

C.next=A.next

A.next=C

12 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Insertion into a Linked List Without Locks
Race trace in 410 notation

insertAfter(A,B) insertAfter(A,C)

prev = &A

B.next = A.next

prev = &A

C.next = A.next

A.next = B A.next = C

� Either of these assignments makes sense in isolation, but
one of them will override the other!

13 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Insertion into a Linked List Without Locks
Precondition

A &D // D NULL

� One list, two items on it: A and D.

14 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Insertion into a Linked List Without Locks
First step

C NULL

A &D // D NULL

B NULL

� Two threads get two nodes, B and C , and want to insert.

new = newNode(B); new = newNode(C);
prev = &A prev = &A

15 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Insertion into a Linked List Without Locks
Second step

C &D

''NNNNNNNNNNNNN

A &D // D NULL

B &D

88ppppppppppppp

� Two threads point their respective nodes C and B into
list at D

B.next=&D C.next=&D

16 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Insertion into a Linked List Without Locks
One thread goes

C &D

''NNNNNNNNNNNNN

A &C

``BBBBBBBB

D NULL

B &D

88ppppppppppppp

� Suppose the thread owning C completes its assignment
first.

A.next=&C

17 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Insertion into a Linked List Without Locks
And the other. . .

C &D

''NNNNNNNNNNNNN

A &B

~~||
||

||
||

D NULL

B &D

88ppppppppppppp

� And the other (owning B) completes second, overwriting
. . .

A.next=&B

� Node C is unreachable!

18 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Insertion into a Linked List Without Locks
What went wrong?

1. Thread B observed that &A->next == D

2. Thread C observed that &A->next == D

3. Thread C changed &A->next “from D to C”

4. Thread B changed &A->next “from D to B”
� But it was C not D!

� How to fix that?
� Give B and C critical sections and serialize them

� Then there is no gap between observation and changing
� But that requries locking, which we are avoiding...

� Take two: assume mistakes are rare, clean up afterward!

19 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Insertion into a Linked List Without Locks
The Lock Free Approach

while(not done)
Prepare data structure update (e.g. new node)
Determine preconditions for the update
ATOMICALLY

if(preconditions hold)
make update

done = 1

� Unlike critical sections, this is not (really) bounded
� Could keep encountering trouble over and over...

� But as long as threads “almost always” don’t do
overlapping updates...

� Then we gain in parallelism by not locking the data
structure.

20 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Insertion into a Linked List Without Locks

� Our assignments were really supposed to be

insertAfter(A,B) insertAfter(A,C)

while(!done) while(!done)

ATOMICALLY ATOMICALLY

if A->next == D if A->next == D

A->next = B A->next = C

else else

done = 1 done = 1

� If we do that, one critical section will safely fail out and
tell us to try again.

� How do we do this ATOMICALLY without locking?

21 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Review of Atomic Primitives

� Remember our old friend XCHG?

� XCHG (ptr, val) atomically:
old val = *ptr;

*ptr = val;

return old val;

22 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Review of Atomic Primitives

� XCHG (ptr, val) atomically:
old val = *ptr;

*ptr = val;

return old val;

� CAS (ptr, expect, new) atomically:
old val = *ptr;

if (old val == expect)

*ptr = new;

return old val;

� Note that CAS is no harder - it’s a read and a write; the
logic is free (it’s on the CPU).

23 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Insertion into a Lock-free Linked List

� Our assignments were really supposed to be

insertAfter(A,B) insertAfter(A,C)

while(!done) while(!done)

ATOMICALLY ATOMICALLY

if A->next == D if A->next == D

A->next = B A->next = C

else else

done = 1 done = 1

� This translates into
while(!done)

n = A->next;

done = (CAS(&A->next,n,B) == n)
� CAS will let us do assignment when the data matches

and will bail out when it doesn’t!
24 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Insertion into a Lock-free Linked List
Simple case, setup

A &D // D NULL

C NULL

� Some thread constructs the bottom node C ; wishes to
place it between the two above, A and D.

� new = newNode(C);

� prev = findLabel(A); /* == &A */

25 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Insertion into a Lock-free Linked List
Simple case, first step

A &D // D NULL

C &D

88ppppppppppppp

� Thread points C node’s next into list at D.

� C.next = A.next;

26 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Insertion into a Lock-free Linked List
Simple case, second step

A &C

~~||
||

||
||

D NULL

C &D

88ppppppppppppp

� CAS(&A.next, &D, &C);

27 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Insertion into a Lock-free Linked List
Race case, setup

C NULL

A &D // D NULL

B NULL

� Two threads get their respective nodes B and C .

new = newNode(B); new = newNode(C);
prev = &A prev = &A

28 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Insertion into a Lock-free Linked List
Race case, first step

C &D

''NNNNNNNNNNNNN

A &D // D NULL

B &D

88ppppppppppppp

� Both set their new node’s next pointer.

B.next=&D C.next=&D

29 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Insertion into a Lock-free Linked List
Race case, first thread

C &D

''NNNNNNNNNNNNN

A &C

``BBBBBBBB

D NULL

B &D

88ppppppppppppp

� Thread C goes first . . .

CAS(&A->next, D, C)

30 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Insertion into a Lock-free Linked List
Race case, second thread

C &D

''NNNNNNNNNNNNN

A &C

``BBBBBBBB

CAS(prev−>next,new−>next,new)~~

D NULL

B &D

BCED
@AOO

� And the other (owning B). . .

CAS(&A->next, D, B)

� Fails since A->next == C, not D.

� So this thread tries again.

31 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Insertion into a Lock-free Linked List

� Rewrite the insertion code to be
insertAfter(after, newlabel) {

new = newNode(newlabel);

do {
prev = findLabel(after);

expected = new->next = prev->next;

} while

(CAS(&prev->next, expected, new)

!= expected);

}

32 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

That’s great!

� It works!
� No locks!
� Can simultaneously scan and modify the list!
� Can simultaneously modify and modify the list!

� All those while loops... (retrying over and over?)
� Remember, mutexes had while loops too...

� maybe even around CAS()!

� Here, whenever we retry we know somebody else got
work done!

� Are we done?
� Most data structures need to support deletion as well . . .

33 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Deletion is easy?

� Suppose we have

C &E

&&NNNNNNNNNNNNN

A &C

``BBBBBBBB

E NULL

� And want to get rid of C .

� So CAS(&A.next, &C, &E)

34 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Deletion is easy?

� Now we have

C &E

&&NNNNNNNNNNNNN

A &E // E NULL

� Great, looks like deletion to me!

35 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Deletion is easy?
Continued

� But imagine there was another thread accessing C (say,
scanning the list).

// C next

''OOOOOOOOOOOOO

A next // E next

� We don’t know when that thread is done with C !

� So we can never free(C);

36 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Deletion is easy?
What’s to be done?

� Deletion turns out to be connected with the infamous
“ABA problem.”

� We need some way to reclaim that memory for reuse..

� (Some implementations cheat and assume as
stop-the-world garbage collector.)

� Doing this honestly is remarkably tricky!

37 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

ABA Problem

� A problem of confused identity

global = malloc(sizeof(Foo)) //0x1337
local1 = global local2 = global
global = NULL

free(local1) //0x1337
global = malloc(sizeof(Foo)) //0x1337

/* Validity check */
if (global == local2)
global->foo baz = . . .

� Even though local2 and global might share the same
value, they don’t really mean the same thing.

38 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

ABA Problem

� We begin with an innocent linked list:

head // A &B // B · · ·

� Where head is a a global pointer to the list.

� We’re just going to do operations at the head – treating
the list like a stack.

39 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

ABA Problem
Pop

� We begin with a linked list:

head // A &B // B · · ·

� Removing the head looks like
lhead = head /* == &A */

lnext = lhead->next /* == &B */

CAS(head, lhead, lnext);

� If the CAS is successful, we are done, and the list is

lhead // A &B head // B · · ·

� If not, start over.

40 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

ABA Problem
Push

� We begin with a linked list and private item

A NULL head // B · · ·

� Inserting at the head looks like
lhead = head /* == &B */

A.next = lhead /* A points at B */

CAS(head, lhead, &A);

� If the CAS is successful, we are done, and the list is

head // A &B // B · · ·

� If not, start over.

41 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

ABA Problem
And now it breaks!

Here’s a 30,000 foot look at how this is going to break.
Process 1 Process 2

P Pop
o Use memory
p Push

BANG!

� In words: An extremely, agonizingly slow pop is racing
against a pop and a push, with some scribbling in the
middle.

� All operations are going to be aimed at the same node, A.

� The end is catastrophe.

42 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

ABA Problem

� The first thread gets one instruction into its pop, while

� The second thread completes its pop operation:

head // A &B // B · · ·

h1 = head h2 = head == &A

n2 = h2->next == &B

CAS(head, h2, n2) Success!

� The world now looks like

h1 // A &B head // B · · ·

43 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

ABA Problem

� Now the faster thread is going to do something to the
node it just popped, and then try to push it back on.

h1 // A &B head // B · · ·

A.next = NULL; Use memory
n1 = h1->next == NULL

h2 = head; == &B

A.next = h2; == &B

CAS(head, h2, &A) Success!

h1 // NULL head // A &B // B · · ·

CAS(head, h1, n1) Suc... hm!

head→ NULL A &B // B · · ·
44 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

ABA Problem

� The left thread missed its chance to be notifed of having
stale data.

� Notice that the choice of writing NULL was arbitrary.
� In particular, we might have instead done a much larger

series of operations.
� All that matters is that A ended up back on the list head

when Thread 1 was CAS-ing.

� In punishment, the datastructure is now broken!

45 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Fixing ABA

� It turns out that we need a more sophisticated delete
(and maybe insert and lookup!) function. Look at
[Fomitchev and Ruppert(2004)] or [Michael(2002a)] (or
others) for more details.

� Generation counters are a simple way to solve ABA
� Let’s replace all pointers with
struct {

void * p; /* Pointer */
unsigned int c; /* Counter */

};
� This will allow a “reasonably large” number of pointer

updates before we have to worry.

46 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Fixing ABA

� Suppose we had a primitive which let us write things like
ATOMICALLY

if ((A.next.p == &C) && (A.next.version == 4))

A.next.p = &D

A.next.version = 5

47 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Fixing ABA

� Like CAS, we want a CAS2, which operates on two words
at once:
CAS2(ptr[2], expect[2], new[2]) atomically:
if (ptr[0] != expect[0] || ptr[1] != expect[1])

return {ptr[0], ptr[1]};
else

ptr[0] = new[0]; ptr[1]= new[1];

return { expect[0], expect[1] };
� CAS2 looks more expensive than CAS?

� Two reads, two writes.
� With luck, it’s one cache line; without, it could be four.
� May be (1 + ε) times as hard as CAS...
� May be ∞ times as hard as CAS...

48 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Fixing ABA

h, 0 // A &B, 0 // B · · ·

h1 = head.p h2 = head.p == &A

n2 = h2->next.p == &B

c2 = head.c == 0

CAS2(head,{h2,c2},{n2,c2+1}) Success!

h1.p // A &B, 0 h, 1 // B · · ·

49 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Fixing ABA

h1.p // A &B, 0 head, 1 // B · · ·

n1 = h1->next.p

c1 = head.c

h2 = head.p;

c2 = head.c;

A.next.p = h2;

A.next.c = 0;

CAS2(head,{h2,c2},{&A,c2+1})

head, 2 // A &B, 0 // B · · ·

50 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Fixing ABA

head, 2 // A &B, 0 // B · · ·

Now when the left process does
CAS2(head,{h1,c1},{n1,c1+1}), it’s going to be expecting
head’s generation counter to be at value c1, or 1. Since it is
now at 2, the CAS2 will fail.

51 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Some real algorithms?

� [Michael(2002a)] specifies a CAS-based lock-free
list-based sets and hash tables using a technique called
SMR to solve ABA and allow reuse of memory.

� SMR actually solves ABA as a side effect of safely
reclaiming memory. Instead of blocking the writer until
everybody leaves a critical section, it can efficiently scan
to see if threads are interested in a particular chunk of
memory.

� Their performance figures are worth looking at.
Summary: fine-grained locks (lock per node) show
linear-time increase with # threads, their algorithm
shows essentially constant time.

52 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Read-Copy-Update Mutual Exclusion
Preliminaries

� The ABA problems would all be solved if we could force
everybody who might have read what is now a stale
pointer to complete.

� Phrased slightly differently, we need to separate the
memory update phase from the reclaim (free()) phase.

� And ensure that no readers hold a critical section that
might see the update and reclaim phases.

� Seeing one or the other is OK!

53 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Read-Copy-Update Mutual Exclusion
Preliminaries

� Read-Copy-Update (RCU,
[Wikipedia(2006a), McKenney(2003)]) uses techniques
from lock-free programming.

� Is used in several OSes, including Linux.

� It’s a bit more complicated than the examples given here
and not truly lock-free, but certainly interesting.

54 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Read-Copy-Update Mutual Exclusion
Preliminaries

� Looks like a reader-writer lock from 30, 000 ft.

� Key observations:
� Many more readers than writers.
� Readers frequently can avoid blocking inside the critical

section.
� Readers want to see a consistent datastructure.
� The ABA problems would all be solved if we could force

everybody who might have read what is now a stale
pointer to complete.

55 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Read-Copy-Update Mutual Exclusion
Preliminaries

� Many more readers than writers.
� So we should make sure that the readers don’t have to

do much.
� Kind of like a rwlock.

� Readers frequently can avoid blocking inside the critical
section.

� Required property of RCU readers.
� We’ll see why this is important in a bit.

� Readers want to see a consistent datastructure.
� Not all consistency guarantees need to be kept, but, for

example, we want to avoid use-after-free and the
possibility of faulting.

� But it might be the case that we let node->next->prev
!= node as readers only use these pointers to traverse.

56 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Read-Copy-Update Mutual Exclusion
Preliminaries

� Disclaimer: function names have been changed from, e.g.,
the Linux implementation, to make the meanings more
clear.

� Disclaimer 2: RCU comes in many flavors - the one here
is a small toy model but works on real hardware (like
Pebbles).

57 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Read-Copy-Update Mutual Exclusion
API

� Reader critical section functions.
� void rcu read lock(void);
� void rcu read unlock(void);
� Note the absence of parameters (how odd!).

� Accessor functions:
� void * rcu fetch(void *); is used to fetch a pointer

from an RCU protected data structure.
� void * rcu assign(void *, void *); is used to

assign a new value to an RCU protected pointer.

� Synchronization points:
� void rcu synchronize(void); is used once a writer

is finished to signal that updates are complete.
� Moves from “update” to “reclaim” phase.

58 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Read-Copy-Update Mutual Exclusion
API: Reader’s View

� Suppose we have a global list, called list, that we want
to read under RCU.

� The code for iteration looks like
rcu read lock();

list head t *llist = rcu fetch(list);

list node t *node = rcu fetch(llist->head);

while(node != NULL) {
... /* Do something reader-like */

node = rcu fetch(node->next);

}
rcu read unlock();

59 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Read-Copy-Update Mutual Exclusion
API: Writer’s View

� Suppose we want to delete the head of the same global
list, list.

� We need to give it a writer exclusion mutex, list wlock.
void delete head of list() {

list node t *head;

mutex lock(&list wlock); // No other writers

head = list->head;

list node t *next = head->next;

rcu assign(list, next);

rcu synchronize();

mutex unlock(&list wlock);

free(head); /* Reclaim phase */

}
60 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Read-Copy-Update Mutual Exclusion
API: Summary

� This is kinda like a rwlock:
� It allows an arbitrary number of readers to run against

each other.
� It prevents multiple writers from writing at once.

� It is absolutely unlike a rwlock because
� readers and writers do not exclude each other!

61 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Read-Copy-Update Mutual Exclusion
API: Wait, WHAT?

� Readers can run alongside writers! There’s no mechanism
in the reader to serialize against the writer! See:

CPU 1 (reader) CPU 2 (writer)
rcu read lock(); mutex lock(...);

llist = rcu fetch(list); . . .
rcu assign(list, new);

rcu synchronize();

rcu fetch(llist->head);

62 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Read-Copy-Update Mutual Exclusion
Implementation: Key Ideas

� The deletion problem, and ABA, was a problem of not
knowing when nobody had a stale reference.

� If
� readers agree to drop all references in bounded time
� AND writers can tell when readers have dropped

references

� Then we know when it is safe to reclaim (i.e. free())
memory.

� Being safe for reclaim is exactly the same as being safe
for reuse.

63 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Read-Copy-Update Mutual Exclusion
Implementation: Approximation

� Want:
� readers agree to drop all references in bounded time
� AND writers can tell when readers have dropped

references

� You can imagine that there’s an array of reading[i]
values out there, with each thread having its own index...

� Each reader sets reading[me] = 1, reads, then sets
reading[me] = 0.

� The writer then scans the array looking for all flags to be
0.

� When this happens, the writer knows that no readers
have stale references, and all is well!

64 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Read-Copy-Update Mutual Exclusion
Implementation

� So how does RCU actually do this?

� rcu read lock() simply disables the local CPU’s
preemptive scheduler.

� This is where the requirement that readers not block
comes from.

� rcu assign() inserts a write memory barrier (“write
fence”) to force all writes in the out-of-order buffers to be
made visible before it does the assignment requested.

� rcu fetch() is just a dereference on most architectures.
� Because most architectures ensure coherency.
� There are exceptions (notably, DEC ALPHA systems).

65 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Read-Copy-Update Mutual Exclusion
Implementation

� Given all of this, what does rcu synchronize() do?

� It waits until every CPU undergoes a context switch!
� Could just have a context switch counter per CPU and

wait for each to fire, or...
� Ensure that the thread calling synchronize gets run on

every CPU before the synchronize returns (using
something like move me to cpu(int cpunum);)

� Because readers are non-preemptible, this will force all
critical sections that began before the synchronize to
complete before the writer can enter reclaim phase.

� That enables safe reclaim and as a side-effect solves the
ABA problem for us!

66 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Read-Copy-Update Mutual Exclusion
Pictures: Writer view

� Let’s again take a linked list, this time a doubly linked
one.

head // A
//
B

//
oo Coo tailoo

� Now suppose the writer acquires the write lock and
updates to delete B :

head // A
WV UT

^^^^^^^^^^^^

��
B

//
oo CRSPQ
^^^^^^^^^^^^

PP tailoo

� Now the writer synchronizes, forcing all readers with
references to B out of the list. Only then can B be
reclaimed!

head // A
//
Coo tailoo

67 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Read-Copy-Update Mutual Exclusion
Pictures: Reader View

� Looking at that again, from the reader’s side now.
Originally

head // A
//
B

//
oo Coo tailoo

� The writer first sets it to

head // A
WV UT

^^^^^^^^^^^^

��
B

//
oo Coo tailoo

� And then

head // A
WV UT

^^^^^^^^^^^^

��
B

//
oo CRSPQ
^^^^^^^^^^^^

PP tailoo

68 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Read-Copy-Update Mutual Exclusion
Pictures

� The writer forced memory consistency (fencing) between
each update.

� So each reader’s dereference occurred entirely before or
entirely after each write.

� So the reader’s traversal in either direction is entirely
consistent!

� Though moving back and forth might expose the writer’s
action.

� But it’s OK, because we’ll just see a disconnected node.

� It’s not gone yet, just disconnected.

� It won’t be reclaimed until we drop our critical section.

69 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Tradeoffs
What Have We Learned?

� We can replace fixed-time lock-based critical sections with
“almost-always-fixed-time” compare-and-swap loops...

� Note that getting the lock was not fixed-time, just the
critical section.

� CAS is a kind of critical mini-section in hardware.

� Because many threads may have references into a data
structure, knowing when something has no references is
both very important and very difficult.

� But all is not lost!
� Generation counters and RCU offer paths to salvation.
� There are others, for the curious.

70 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Tradeoffs
Write Your Own?

� It’s extremely hard to roll your own lockfree algorithm.

� But moreover, it’s almost impossible to debug one.

� Thus all the papers are long not because the algorithms
are hard, . . .

� . . . but because they prove the correctness of the
algorithm so they can skip the debugging step!

71 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Tradeoffs
Lockfree vs. Locking.

� Most lock-free algorithms increase the number of atomic
operations, compared to the lockful variants.

� Thus we starve processors for bus activity on bus-locking
systems.

� On systems with cache coherency protocols, we might
livelock with no processor able to make progress due to
cacheline stealing and high transit times.

� Nobody can get all the cachelines to execute an
instruction before a request comes in and and steals one
of the ones they had.

72 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Tradeoffs
Lockfree vs. Locking.

� Interestingly, RCU tends to decrease the number of
atomic operations.

� It can because it requires readers to be non-blocking and
can interact with the scheduler.

� RCU requires the ability to force a thread to run on every
CPU or at least observe when every CPU has context
switched.

� Difficult to use RCU in userland!

� RCU still suffers a slowdown from cache line shuffling, but
will make progress due to there being only one writer.

73 / 79

Introduction LFL Insert LFL Delete Alg RCU Tradeoffs Conclusion

Conclusion

� Lock-free datastructures are extremely cool.

� Understanding them
� Uses clever hardware features

� This is probably good for one’s soul anyway.
� Hardware is only going to get more “clever.”

� Leads to real-world tools like RCU.
� Gives a topic for conversation at parties.

� Lock-free algorithms proper have their place, but that
place is somewhat small.

� Generally more complex than standard lockful
algorithms.

� Much harder (“impossible?”) to debug.
� Usually used only when there is no other option.

74 / 79

Acknowledgements Reclaim Miscellany

M. Fomitchev and E. Ruppert, PODC pp. 50–60 (2004),
http://www.research.ibm.com/people/m/michael/podc-
2002.pdf.

M. M. Michael, SPAA pp. 73–83 (2002a),
http://portal.acm.org/ft gateway.cfm?id=564881&type=pdf
&coll=GUIDE&dl=ACM&CFID=73232202
&CFTOKEN=1170757.

Wikipedia, Read-copy-update (2006a),
http://en.wikipedia.org/wiki/Read-copy-update.

P. McKenney (2003),
http://www.linuxjournal.com/article/6993.

Wikipedia, Lock-free and wait-free algorithms (2006b),
http://en.wikipedia.org/wiki/Lock-free and wait-
free algorithms.

74 / 79

Acknowledgements Reclaim Miscellany

Wikipedia, Non-blocking synchronization (2006c),
http://en.wikipedia.org/wiki/Non-
blocking synchronization.

M. M. Michael, PODC pp. 1–10 (2002b),
http://www.research.ibm.com/people/m/michael/podc-
2002.pdf.

M. M. Michael, IEEECS pp. 1–10 (2004),
http://www.research.ibm.com/people/m/michael/podc-
2002.pdf.

H. Sundell, in International Parallel and Distributed
Processing Symposium (IEEE, 2005), 1530-2075/05,
http://ieeexplore.ieee.org/iel5/9722/30685/01419843.pdf?
tp=&arnumber=1419843&isnumber=30685.

74 / 79

Acknowledgements Reclaim Miscellany

P. Memishian, On locking (2006),
http://blogs.sun.com/meem/entry/on locking.

75 / 79

Acknowledgements Reclaim Miscellany

Acknowledgements

� Dave Eckhardt (de0u) has seen this lecture about as
often as I have, and has produced useful commentary on
every release.

� Bruce Maggs (bmm) for moral support and big-picture
guidance

� Jess Mink (jmink), Matt Brewer (mbrewer), and Mr.
Wright (mrwright) for being victims of beta versions of
this lecture.

� [Nobody on this list deserves any of the blame, but
merely credit, for this lecture.]

75 / 79

Acknowledgements Reclaim Miscellany

Full fledged deletion & reclaim

� Even though we might be able to solve ABA, it still
doesn’t solve memory reclaim!

� Imagine that instead of being reclaimed by the list, the
deleted node before had been reclaimed by something
else...

� A different list
� A tree
� For use as a thread control block

76 / 79

Acknowledgements Reclaim Miscellany

Full fledged deletion & reclaim

� What if we looked at ABA differently . . .

� It only matters if there is the possibility of confusion.

� In particular, might demonstrate strong interest in things
that might confuse me

� Hazard Pointers (“Safe Memory Reclaimation” or just
“SMR”) [Michael(2002b)] and [Michael(2004)]

� Wait-free reference counters [Sundell(2005)]

� These are ways of asking “If I, Thread 189236, were to
put something here, would anybody be confused?”

� This solves ABA, but really as a side effect: it lets us
reclaim address space (and therefore memory) because we
know nobody’s using it!

77 / 79

Acknowledgements Reclaim Miscellany

The SMR Algorithm

� Every thread comes pre-equipped with a finite list of
“hazards”

� Memory reclaim involves scanning everybody’s hazards to
see if there’s a collision

� Threads doing reclaim yield() (to the objecting thread)
until the hazard is clear

� Difficulty
� Show that hazards can only decrease when deletions are

pending
� Show that deletions eventually succeed (can’t deadlock

on hazards)
� Managing the list of threads’ hazards is difficult

78 / 79

Acknowledgements Reclaim Miscellany

Observation On Object Lifetime

Instance of a general problem [Memishian(2006)]:

Things get tricky when the object must go away. [...]
Any thread looking up the object – by definition –
does not yet have the object and thus cannot hold
the object’s lock during the lookup operation. [...]
Thus, whatever higher-level synchronization is used
to coordinate the threads looking up the object must
also be used as part of removing the object from
visibility.

79 / 79

	Introduction
	Locks Can Be Expensive

	Lock-Free Linked List Insertion
	Lock-Free Linked List Node
	Insertion into a Linked List Without Locks
	Review of Atomic Primitives
	Insertion into a Lock-free Linked List

	Lock-Free Linked List Deletion
	That's great!
	Deletion is easy?
	ABA Problem
	Fixing ABA

	Some real algorithms?
	Read-Copy-Update Mutual Exclusion
	Preliminaries
	API
	Implementation

	Tradeoffs
	What Have We Learned?
	Write Your Own?
	Lockfree vs. Locking.

	Conclusion
	Appendix
	Acknowledgements
	Memory Reclaimation
	Full fledged deletion & reclaim
	The SMR Algorithm

	Miscellany
	Observation On Object Lifetime

