
Operating System Structure

Joey Echeverria joey42+os@gmail.com
modified by: Matthew Brewer mbrewer@andrew.cmu.edu

modified by: Robert Strickland rstrickl@andrew.cmu.edu

April 12, 2008

Carnegie Mellon University: 15-410 Spring 2008

Overview

• Motivations

• Kernel Structures

– Monolithic Kernels
– Open Systems
– Microkernels
– Provable Kernel Extensions
– Exokernels
– More Microkernels

• Summary

Carnegie Mellon University: 15-410 Spring 2008 1

Motivations

• Operating systems have 3 hard jobs:

1. Protection boundaries
– Enforce access policies
– Highly Complex!

2. Abstraction layers
– Present a “simple”, “uniform” interface to hardware
– Examples: block devices, CD drives, tty, filesystem, network stack

3. Hardware multiplexing
– Process Abstraction
– Resource Allocation

• What framework should we use?

Carnegie Mellon University: 15-410 Spring 2008 2

Pebbles Kernel

Carnegie Mellon University: 15-410 Spring 2008 3

Pebbles Kernel

• Syscalls ≈ 23

– fork(), exec(), cas2i runflag(), yield()

• Lines of trusted code ≈ 2000 to 24000

Carnegie Mellon University: 15-410 Spring 2008 4

Linux Kernel

Carnegie Mellon University: 15-410 Spring 2008 5

Linux Kernel

• Syscalls: ≈ 281 on “Andrew Linux”, and increasing fast

– fork(), exec(), read(), readdir(), ioctl()

• Lines of trusted code ≈ 8−9 million currently

– ≈ 200,000 are just for USB drivers
– ≈ 15,000 for USB core alone

• Caveats - Many archs/subarchs, every driver EVER

Carnegie Mellon University: 15-410 Spring 2008 6

Linux System Calls

 0

 50

 100

 150

 200

 250

 300

 350

 2004 2004.5 2005 2005.5 2006 2006.5 2007 2007.5

nu
m

 s
ys

ca
lls

year

Measured

Carnegie Mellon University: 15-410 Spring 2008 7

Monolithic Kernels

• Examples: UNIX, Mac OS X, Windows XP/Vista, Linux, BSD, i.e., common

• Advantages:

+ Well understood
+ Good performance
+ High level of protection between applications

• Disadvantages:

– No protection between kernel components
– LOTS of code is in kernel
– Not (very) extensible

Carnegie Mellon University: 15-410 Spring 2008 8

Kernel Extensions

• Problem - Bob has a WiMAX card

– He wants a WiMAX driver
– No one else wants a (large, unstable) WiMAX driver

• Solution - loadable kernel modules!

– Special binaries compiled with kernel
– Can be loaded at run-time - so we can have LOTS of them
– Can break kernel, so loadable only by root

• done in: VMS, Windows NT, Linux, BSD, OS X

Carnegie Mellon University: 15-410 Spring 2008 9

WiMAX Example

Linux Kernel

Carnegie Mellon University: 15-410 Spring 2008 10

WiMAX Example

Linux Kernel with WiMAX module

Carnegie Mellon University: 15-410 Spring 2008 11

Kernel Extensions

• Advantages

+ Can extend kernel
+ Extensions run FAST

• Disadvantages

– Adding things to kernel can break it
– Have to ask sysadmin nicely
– Adds a lot of trusted code

• Protection overhead: system call, address spaces

Carnegie Mellon University: 15-410 Spring 2008 12

Open Systems

• Everything in kernel mode!

– No system calls
– All code is implicitly trusted

• Everything in one address space!

– Applications, libraries, and kernel can see each other
– No context switching

• Used to be very common

– MS-DOS, Mac OS 9 and prior, Windows ME, 98, 95, 3.1, etc, Palm OS,
Some embedded systems

Carnegie Mellon University: 15-410 Spring 2008 13

No Protection!

Carnegie Mellon University: 15-410 Spring 2008 14

Open Systems

• Advantages:

+ Very good performance
+ Very extensible

* Undocumented Windows, Schulman et al. 1992
* In the case of Mac OS and Palm OS there’s an extensions industry

+ Lack of abstractions makes realtime systems easier

• Disadvantages:

– No protection, and therefore not particularly stable
– Cannot support multiple users
– Composing extensions can result in unpredictable behavior

Carnegie Mellon University: 15-410 Spring 2008 15

Microkernels

• Replace the monolithic kernel with a “small, clean, logical” set of
abstractions

– Tasks
– Threads
– Virtual Memory
– Interprocess Communication

• Move the rest of the OS into server processes

Carnegie Mellon University: 15-410 Spring 2008 16

Mach Vision

Carnegie Mellon University: 15-410 Spring 2008 17

Mach

• Syscalls: initially 92, increased slightly later

– msg send, port status, task resume, vm allocate

• Lines of trusted code ≈ 484,000 (Hurd version)

• Caveats - several archs/subarchs, some drivers

Carnegie Mellon University: 15-410 Spring 2008 18

Mach

• Started as a project at CMU (based on RIG project from Rochester)

• Plan

1. Mach 2: Take BSD 4.1 add VM API, IPC, SMP, and threading support
2. Mach 3: saw kernel in half and run as “single-server”
3. Mach 3 continued: decompose single server into smaller servers

2) 3) 3’)

Carnegie Mellon University: 15-410 Spring 2008 19

Mach Results

1. Mach 2 completed in 1989

• Used for Encore, Convex, NeXT, and subsequently OS X
• success!

2. Mach 3 Finished(ish)

• Mach 2 split in 2
• Ran on a few systems at CMU, and a few outside

3. Mach 3 continued

• Multi-server systems: Mach-US, OSF
• Never deployed

Carnegie Mellon University: 15-410 Spring 2008 20

Mach 3 (Microkernel)

• Advantages:

+ Strong protection (even from itself)
+ Untrusted system services (user-space filesystem... see Hurd)

• Disadvantages:

– Performance
∗ It looks like extra context switches and copying would be expensive
∗ Mach 3 ran slow in experiments
∗ Kernel still surprisingly large -

“It’s not micro in size, it’s micro in functionality”
∗ Still hasn’t REALLY been tried

Carnegie Mellon University: 15-410 Spring 2008 21

Mach

• Remember, Mach 3 == microkernel, but Mach 2 == monolithic

• Code ran slow at first, then everyone graduated

• Proved microkernel is feasible

• Stability/Speed of seperation both unproven

Carnegie Mellon University: 15-410 Spring 2008 22

Other Microkernels

• From Mach period

– QNX, competes with VxWorks as a realtime OS
– ChorusOS, realtime kernel out of Europe, now open sourced by Sun

• Modern

– Symbian (sort of), OS on many smart phones
– L4 (discussed later)
– Xen, VMware ...

Carnegie Mellon University: 15-410 Spring 2008 23

“Hypervisors”

• Why not run multiple operating systems?

• IBM Workplace OS (Mach 3.0)

* one kernel for OS/2, OS/400, and AIX
* failure

• Call it a “hypervisor” - idea is rather popular again

* Xen, VMware

Carnegie Mellon University: 15-410 Spring 2008 24

More Options?

• We want an extensible OS

• We want extensions to run fast, but be safe for addition by users

• Assume we don’t like microkernels (slow, more code, whatever)

• So... other ideas?

Carnegie Mellon University: 15-410 Spring 2008 25

Provable Kernel Extensions

Carnegie Mellon University: 15-410 Spring 2008 26

Provable Kernel Extensions

• PROVE the code does what we want

• Checker can be EXTREMELY conservative and careful about what it lets in

– Interepreter safety (CMU: Acceta)
– Compiler-checked source safety (UW: Spin: Modula-3)
– Kernel-verified binary safety (CMU: Proof-carrying code)
∗ More language agnostic - just need a compiler that compiles to PCC

• Safe? Guaranteed (if compiler is correct... same deal as a kernel)

Carnegie Mellon University: 15-410 Spring 2008 27

Provable Kernel Extensions

What if x were a proven kernel extension?

Carnegie Mellon University: 15-410 Spring 2008 28

Provable Everything

• What if ALL code was loaded into the “kernel” and just proved to do the
“right” thing?... Is this silly, or a good idea?

– Looks a lot like Open Systems
– Except compiler can enforce more stability

• Effectiveness strongly dependent on quality of proofs

• Some proofs are HARD, some proofs are IMPOSSIBLE!

• Actual Work: groundwork being done here, MSR’s “Singularity” - take this
as you will

Carnegie Mellon University: 15-410 Spring 2008 29

Provable Everything

• Advantages:

+ Extensible even by users, just add a new extension/application
+ Safe, provably so
+ Good performance because everything is in the kernel

• Disadvantages:

– Proofs are hard - and checking can be slow
– We can’t actually DO this for interesting code (yet?)
– Constrained implementation language
– Constraints may cause things to run slower than protection boundaries
– Still very limited in scope, not used widely

Carnegie Mellon University: 15-410 Spring 2008 30

More Options?

• Monolithic kernel

– Too many abstractions can get in the way
– Not easily extensible for every application (special kernel mods)

• Microkernel

– Maybe Mach is still too much kernel?
– Too heavy an abstraction, too portable, just too much

• Proof systems

– Useful proof checkers are large & still can’t do everything

• If applications control system, can optimize for their usage cases

Carnegie Mellon University: 15-410 Spring 2008 31

Exokernels

• Basic idea: Take the operating system out of the kernel and put it into
libraries

• Why? Applications know better how to manage active hardware resources
than kernel writers do

• Safe? Exokernel is simply a hardware multiplexer, and thus a permissions
boundary.

• Separates the security and protection from the management of resources

Carnegie Mellon University: 15-410 Spring 2008 32

Xok / ExOS

Carnegie Mellon University: 15-410 Spring 2008 33

Xok

Xok (MIT’s eXOKernel)

• Syscalls ≈ 120

– insert pte, pt free, quantum set, disk request

• Lines of trusted code ≈ 100,000

• Caveats - One arch, few/small drivers

Carnegie Mellon University: 15-410 Spring 2008 34

VM Example

• There is no fork()

• There is no exec()

• There is no automatic stack growth

• Exokernel keeps track of physical memory pages
Assigns them to an application on request

– Application (via syscall):
1. Requests frame
2. Requests map of Virtual → Physical

Carnegie Mellon University: 15-410 Spring 2008 35

Example: simple fork()

• fork():

– Acquire a new, blank address space
– Allocate some physical frames
– Map physical pages into blank address space
– Copy bits (from us) to the target, blank address space
– Allocate a new thread and bind it to the address space
– Fill in new thread’s registers and start it running

• The point is that the kernel doesn’t provide fork()

Carnegie Mellon University: 15-410 Spring 2008 36

Example: COW fork()

• fork(), advanced:

– Acquire a new, blank address space
– Ask kernel to set current space’s mappings to R/O
– Map current space’s physical pages R/O into blank space
– Update copy-on-write table in each address space
– Application’s page-fault handler (like a signal handler) copies/re-maps

• Each process can have its own fork() optimized for it – or none at all

Carnegie Mellon University: 15-410 Spring 2008 37

Exokernels: Web Server Example

• In a typical web server the data must go from:

1. the disk to kernel memory, read()
2. kernel memory to user memory, memcpy()
3. user memory back to kernel memory memcpy()
4. kernel memory to the network device write()

• In an exokernel, the application can have the data go straight from disk to
the network interface

Carnegie Mellon University: 15-410 Spring 2008 38

Exokernels: Web Server Example

• Traditional kernel and web server:

2. read() − copy from kernel to user buffer

3. send() − user buffer to kernel buffer

 −− data is check−summed

1. read() − copy from disk to kernel buffer Memory
Memory Bus

EthernetProcessorDisk

1 2 3
4. send() − kernel buffer to device memory

4

That is: six bus crossovers

Carnegie Mellon University: 15-410 Spring 2008 39

Exokernels: Web Server Example

• Exokernel and Cheetah:

1. Copy from disk to memory
2. Copy from memory to network device

EthernetDisk

Memory

1

Memory Bus

2

That is: two bus crossovers

Carnegie Mellon University: 15-410 Spring 2008 40

Exokernels: Web Server Example

• Exokernel and Cheetah:

– “File system” doesn’t store files, stores packet-body streams
∗ Data blocks are collocated with pre-computed data checksums

– Header is finished when the data is sent out, taking advantage of the
ability of TCP check-sums to be “patched”

– This saves the system from recomputing a check-sum, saves processing
power

TCP DATA IP TCP DATA

DATADATADATA DATA DATA DATA

Traditional Packet
Construction Construction

Disk:

Packets:

...

Cheetah Packet

IP

Carnegie Mellon University: 15-410 Spring 2008 41

Exokernels: Cheetah Performance

Carnegie Mellon University: 15-410 Spring 2008 42

Exokernels

• Advantages:

+ Extensible: just add a new “operating system library”
+ Fast?: Applications intimately manage hardware, no obstruction layers
+ Safe: Exokernel allows safe sharing of resources

• Disadvantages:

– To take advantage of Exo, basically writing an OS for each app
– Nothing about moving an OS into libraries makes it easier to write
– Slow?: Many many small syscalls instead of one big syscall
– send file(2) - Why change when you can steal?
– Requires policy: despite assertions to the contrary

Carnegie Mellon University: 15-410 Spring 2008 43

Exokernels

• Xok development is mostly over

• Torch has been passed to L4

Carnegie Mellon University: 15-410 Spring 2008 44

Exokernels

• In practice Exokernels still have some abstractions

• Exokernel still missing some abstractions that seem necessary

• But we like small: correctness ∝ 1/code size

• Then what do we need?

• The RIGHT set of minimal abstractions (IPC, and VM API)

Carnegie Mellon University: 15-410 Spring 2008 45

More Microkernels (L4)

Carnegie Mellon University: 15-410 Spring 2008 46

L4

• Syscalls < 20

– memory control, start thread, IPC (send/recv on stringItem, Fpage)

• Lines of trusted code ≈ 37,000

• Caveats - one arch, nearly no drivers (though none necessary)

Carnegie Mellon University: 15-410 Spring 2008 47

L4
• Idea: a truly minimal kernel

– Minimal VM abstraction (protection domains)
– Processor multiplexing (avoiding DDOS)
– Synchronous IPC (not Mach IPC™)

• Everything else in userland

– Kernel lacks device drivers, so we can have untrusted ones
– like Exo: implement OS in libraries for mere abstractions
∗ Fork, Exec, Filesystem Interface, VM interface

– new: Implement OS in processes for required protection
∗ Filesystem, Global Namespace, Device Drivers

– For fun and profit: http://os.inf.tu-dresden.de/L4/

Carnegie Mellon University: 15-410 Spring 2008 48

Microkernel OS’n (GNU Hurd Project)

• GNU Hurd Project:

– Hurd stands for ’Hird of Unix-Replacing Daemons’ and Hird stands for
’Hurd of Interfaces Representing Depth’

– GNU Hurd is the FSF’s kernel (Richard M Stallman)
– Work began in 1990 on the kernel, has run on 10’s of machines
– Hurd/Mach vaguely runs, so abandoned in favor of Hurd/L4
– Hurd/L4 suspended after two particular OS TAs tried to write their IPC

layer.
– Ready for mass deployment Real Soon Now™(comment circa 2006)

Carnegie Mellon University: 15-410 Spring 2008 49

Microkernel OS’n (L4Linux, DROPS)

• L4Linux - run Linux on L4

– You get Linux, but a bit slower
– You get multiple Linux’s at a time
– You get a realtime microkernel too

• DROPS - a realtime OS for L4

– Realtime, and minimal
– No security

• Combine the two for a realtime OS and linux... (mostly dead)

Carnegie Mellon University: 15-410 Spring 2008 50

L4

• Advantages:

+ Fast as hypervisor, similar to Mach (L4Linux 4% slower than Linux)
+ VERY good separation (if we want it)
+ Supports multiple OS personalities (hypervisor)
+ Soft realtime

• Disadvantages:

– Recreated much of Mach, but smaller, entails same problems
– Still notable missing abstraction: capabilities (more on this later)
– No Micro-OS written for it with protection boundaries
– Still untested with a multiserver topology

Carnegie Mellon University: 15-410 Spring 2008 51

Microkernel OS’n

• The literature has between 5 and 50 percent overhead for microkernels

– See The Performance of µ-Kernel-Based Systems
∗ http://os.inf.tu-dresden.de/pubs/sosp97/

Carnegie Mellon University: 15-410 Spring 2008 52

Summing Up

Carnegie Mellon University: 15-410 Spring 2008 53

Summing Up

• So why don’t we use microkernels or something similar?

• Say we have a micro-(or exo)-kernel, and make it run fast

– We describe things we can do in userspace faster (like Cheetah)
– Monolithic developer listens intently
– Monolithic developer adds functionality to his/her kernel (send file(2))
– Monolithic kernel again runs as fast or faster than our microkernel

• So, if monolithic kernel runs as fast, why bother porting to new OS?

– Stability - new device drivers break Linux often, we use them anyway
– The story above can get painful, hard to write, hard to debug

Carnegie Mellon University: 15-410 Spring 2008 54

Summing Up

What’s the moral?

• There are many ways to do things

• Many of them even work

Carnegie Mellon University: 15-410 Spring 2008 55

Further Reading

• Jochen Liedtke, On Micro-Kernel Construction

• Willy Zwaenepoel, Extensible Systems are Leading OS Research Astray

• Michael Swift, Improving the Reliability of Commodity Operating Systems

• An Overview of the Singularity Project, Microsoft Research MSR-TR-2005-
135

• Harmen Hartig, The Performance of µ-Kernel-Based Systems

Carnegie Mellon University: 15-410 Spring 2008 56

Further Reading
CODE: (in no particular order)

• Minix (micro)

• Plan 9 (midsized)

• NewOS/Haiku (micro’ish)

• L4 pistachio (micro)

• Solaris (monolithic)

• (net/dragonfly)BSD (monolithic)

Carnegie Mellon University: 15-410 Spring 2008 57

