
15-410, S’081

Real Time Systems
Mar 19, 2008

Roger B. DannenbergRoger B. Dannenberg

Dave Dave EckhardtEckhardt

Additional material by Additional material by Vishakha Gupta

15-410
“Arbitrarily Bad”

15-410, S’082

Scheduling on Mars

What happened on Mars?What happened on Mars?
 (1997)

15-410, S’083

What Happened On Mars?

Mars Pathfinder probe (1997)Mars Pathfinder probe (1997)
Nice launchNice launch
Nice transitNice transit
Nice de-orbitNice de-orbit
Nice thump-down (inflatable air-bag)Nice thump-down (inflatable air-bag)
Nice rover disembarkationNice rover disembarkation
Nice rover Nice rover spontaneous rebootsspontaneous reboots

15-410, S’084

Software Design

Bus
Activity

Distribute
Data

Bus
Sched

Pri: 1Pri: 3

Other Computation
T1 T2

T1 < T2 or else system reboots!!!

15-410, S’085

Software Design

Bus
Activity

Distribute
Data

Bus
Sched

Pri: 1Pri: 3

Other Computation
T1 T2

T1 < T2 or else system reboots!!!
Other threads:

ASI/MET (weather data): low priority
Many medium priority tasks

Distribute Data sends data to ASI/MET via a
software pipe facility

15-410, S’086

What could go wrong?

ASI/METASI/MET locks pipe to read data locks pipe to read data
High-priority High-priority Distribute DataDistribute Data must wait to write data must wait to write data

15-410, S’087

What could go wrong?

ASI/METASI/MET locks pipe structure to read message locks pipe structure to read message
InterruptInterrupt makes makes other tasksother tasks runnablerunnable

 Higher priority, so preempt ASI/MET
 ASI/MET does not release lock for a long time…

 Distribute DataDistribute Data becomes becomes runnablerunnable
 Very high priority, so preempts other tasks
 Distribute Data tries to send data to ASI/MET, but blocks
 Other tasks resume, run for a long time…

Bus Bus SchedSched becomes becomes runnable runnable and runsand runs
 Distribute Data did not finish in time
 REBOOT

15-410, S’088

Priority Inversion

ASI/MET

Pipe At this point, ASI/MET is running
and holds a lock to read the pipe.

Other Tasks Distribute Data

CPU

15-410, S’089

Priority Inversion

ASI/MET

Pipe

Other Tasks

Other tasks take the CPU
because they have higher
priority, ASI/MET cannot
release the lock.

Distribute Data

CPU

15-410, S’0810

Priority Inversion

ASI/MET

Pipe

CPU

Other Tasks Distribute Data

Distribute Data runs at high
priority, but quickly blocks
waiting for the pipe lock...

15-410, S’0811

Priority Inversion

ASI/MET

Pipe

CPU

Other Tasks Distribute Data

Other Tasks resume until
time runs out and system
reboots.

15-410, S’0812

Priority Inversion

Bus
Activity

Distribute
Data

Bus
Sched

Pri: 1Pri: 3

ASI/MET

Other Tasks

15-410, S’0813

Priority Inheritance

Bus
Activity

Distribute
Data

Bus
Sched

Pri: 1Pri: 3

ASI/MET

Other Tasks

Inherit priority from Distribute Data
Exit critical section, release lock
Resume low priority

Attempt lock
and block

Acquire lock

15-410, S’0814

History of an Idea

Priority Inheritance Protocols: An Approach toPriority Inheritance Protocols: An Approach to
Real-Time SynchronizationReal-Time Synchronization
 IEEE Transactions on Computers 39:9

 Lui Sha (CMU SEI)
 Ragunathan Rajkumar (IBM Research ⇒ CMU ECE)
 John Lehoczky (CMU Statistics)

15-410, S’0815

History of an Idea

EventsEvents
 1987-12 “Manuscript” received
 1988-05 Revised
 1990-09 Published
 1997-07 Rescues Mars Pathfinder

History courtesy of Mike Jones and Glen ReevesHistory courtesy of Mike Jones and Glen Reeves
 http://www.cs.cmu.edu/~rajkumar/mars.html
 http://www.cs.duke.edu/~carla/mars.html

15-410, S’0816

Test Your Understanding

What could go wrong with an atomic exchange/spinWhat could go wrong with an atomic exchange/spin
lock?lock?

Assume threads have fixed priorities.Assume threads have fixed priorities.

Explain how priority inversion could arise from a callExplain how priority inversion could arise from a call
to to mallocmalloc..

15-410, S’0817

Real-Time Systems

Types of SystemsTypes of Systems
Rate Monotonic SchedulingRate Monotonic Scheduling
Earliest Deadline First SchedulingEarliest Deadline First Scheduling
Priority InversionPriority Inversion
Real-Time Audio Application/OS InteractionsReal-Time Audio Application/OS Interactions

15-410, S’0818

Embedded Systems Scheduling
One Big LoopOne Big Loop

 Polled I/O
 One thread: while (true) { task1(); task2(); … }

Time-driven: wait for next period at top of loopTime-driven: wait for next period at top of loop
Multiple threadsMultiple threads

 Round-Robin, or
Time-driven: run tasks at fixed frequencies

 Can incorporate interrupt-driven I/O

Static Priority-based Scheduling/Rate MonotonicStatic Priority-based Scheduling/Rate Monotonic
Deadline SchedulingDeadline Scheduling

15-410, S’0819

Rate Monotonic Scheduling

AA method of assigning fixed priorities to a set ofmethod of assigning fixed priorities to a set of
periodic processesperiodic processes

Higher rate (frequency) Higher rate (frequency) ⇒⇒ Higher priority Higher priority

Formal framework for reasoning about Formal framework for reasoning about schedulabilityschedulability
Schedulable if:Schedulable if:

preemption + execution + blocking < deadline

15-410, S’0820

Assumptions

Periodic tasksPeriodic tasks
Tasks become ready to execute at beginning of theirTasks become ready to execute at beginning of their

periodsperiods
TasksTasks runnable runnable until execution is complete (1 burst)until execution is complete (1 burst)
Task deadlines are always start of next periodTask deadlines are always start of next period
No task is more important/critical than anotherNo task is more important/critical than another
Tasks account for all execution timeTasks account for all execution time

 Task switching is instantaneous
 No interrupts

15-410, S’0821

Utilization Bound Test

Are all myAre all my taskstasks
schedulable?schedulable?

Computation time Computation time CCii

Period TPeriod Tii,,
Utilization Utilization UUii = = CCii/T/Tii

Rate MonotonicRate Monotonic
Scheduling:Scheduling:
 Utilization for n tasks: U(n) = n(21/n – 1)
 This is a worst case (lower) bound

15-410, S’0822

Example

Total utilization for 3 tasks is .200 + .267 + .286 = .753
U(3) = .779

Total utilization for 3 tasks < U(3)
The periodic tasks in the sample problem are schedulable
According to the upper bound (UB) test

Example from 14342 –
Fundamentals of
Embedded Systems

15-410, S’0823

Timeline for the example

15-410, S’0824

Response Time Test

Theorem: For a set of Theorem: For a set of independent periodic tasks, if
each task meets its deadline with worst case task
phasing, the deadline will always be met

System might be schedulable with utilization > U(n),
but it depends on the particular task mix

15-410, S’0825

Rate Monotonic Extensions

Blocking:Blocking:
 preemption + execution + blocking < deadline

Interrupt tasksInterrupt tasks
Addition/Deletion of tasksAddition/Deletion of tasks
Aperiodic Aperiodic tasks with computational budgettasks with computational budget

15-410, S’0826

Earliest Deadline First

A dynamic scheduling principleA dynamic scheduling principle
Assume independent tasksAssume independent tasks
Tasks in a priority queue, ordered by deadlineTasks in a priority queue, ordered by deadline
With periodic processes with deadlines = periods,With periodic processes with deadlines = periods,

EDF has a utilization bound of 100%EDF has a utilization bound of 100%
((optimaloptimal))

15-410, S’0827

Example

15-410, S’0828

++ Optimal for schedulable task set Optimal for schedulable task set
++ Task set need not be periodic Task set need not be periodic
++ Deadlines need not equal periods Deadlines need not equal periods
–– Overload behavior can be arbitrarily bad Overload behavior can be arbitrarily bad
–– Considered more difficult to implement than static Considered more difficult to implement than static

priority schemespriority schemes

Pros and Cons

15-410, S’0829

Rate Monotonic vs.
Earliest Deadline First
Rate MonotonicRate Monotonic

 More mature
 More widely supported
 Maps onto static priority schedulers (NT, CE, Linux, OS X)

Earliest Deadline FirstEarliest Deadline First
 Sometimes higher utilization
 Less restrictive assumptions

Neither is really complicatedNeither is really complicated
 If you have a well-defined problem, analysis is

straightforward
 If not, think carefully about failure modes and costs

15-410, S’0830

Real World/Real Time Audio

What do you have to work with?What do you have to work with?
What are the implications?What are the implications?
Putting it together.Putting it together.
What performance can you get?What performance can you get?

15-410, S’0831

Audio: What Can You Assume?
Potential for priority inversionPotential for priority inversion
System response time is an issue:System response time is an issue:

system_latencysystem_latency + + preemption preemption + execution + blocking < deadline+ execution + blocking < deadline

Static Priority SchedulingStatic Priority Scheduling
(At least) two application classes:(At least) two application classes:

 High audio latency (iTunes, sound effects, audio editor)
 Compute audio well ahead (>100 ms)
 Leave it to device driver to deliver samples on time

 Low audio latency (VoIP, Guitar Hero, real-time music synthesis)
 Audio depends on real-time input
 Only compute 1-10ms ahead of time
 User-level application scheduling is critical

15-410, S’0832

Low Audio Latency
Implications
Need to use static priority scheduling Need to use static priority scheduling ⇒⇒

 1ms to compute audio < 10ms to refresh display
Priority Inversion Priority Inversion is is a problem a problem ⇒⇒

No lockingNo locking ⇒⇒
No shared data structuresNo shared data structures ⇒⇒
 Threads communicate via lock-free FIFO Threads communicate via lock-free FIFO
 No No mallocmalloc ⇒⇒

 independent memory pool per thread independent memory pool per thread
OR only lock-free shared structures OR only lock-free shared structures ⇒⇒
 No No malloc malloc ⇒⇒ write your own write your own
+ lots of synchronous polling for I/O+ lots of synchronous polling for I/O

(note similarity to a kernel)(note similarity to a kernel)

15-410, S’0833

Putting It Together
while (true) {
 audio_read(&buf);
 while (!input.empty())
 process_input();
 process_audio(&buf);
 // maybe send data to
 // output fifo
 audio_write(&buf);
}

Audio Processing

Main Program

FIFOs
(No other
shared
memory)

15-410, S’0834

What Performance Can You
Get?
Current audio applications can deliver end-to-endCurrent audio applications can deliver end-to-end

latencies in the 3 to 10ms range.latencies in the 3 to 10ms range.
Note: Note: ““nativenative”” windows audio is quit poor, but 3rd windows audio is quit poor, but 3rd

party (ASIO) drivers exist to improve performance.party (ASIO) drivers exist to improve performance.
A big issue is A big issue is ““system latencysystem latency””::

 SGI/Irix was a leader: hard real-time kernel
 Linux has evolved rapidly (now <1ms)
 OS X: special real-time threads for audio
 Windows: worst-case system latency is high

15-410, S’0835

Real-Time SchedulingReal-Time Scheduling
 Rate Monotonic
 Earliest Deadline First

Priority InversionPriority Inversion
Implications of Real-World OS on Real-TimeImplications of Real-World OS on Real-Time

ApplicationsApplications
 Polling
 Locks limited by Priority Inversion
 (Un)shared memory

Summary

