
15-410,S'081

Virtual Memory #3
Feb. 22, 2008

Dave EckhardtDave Eckhardt

Roger DannenbergRoger Dannenberg

L18_VM3

15-410
“...`thrashing' == `excessive' paging...”

15-410,S'082

Synchronization

Project 2 due tonightProject 2 due tonight
� Check you can write your mygroup/p2 directory early
� Please put your files in mygroup/p2

� Not p2/p2, p2/our_project_2, p2/p2.tar
� Please don't mail us files
� Don't forget about the late-day form if you need it

� Remember to balance against P3

UpcomingUpcoming
� HW1 out soon, due sometime Wednesday
� Exam – Thursday
� Project 3 (including one checkpoint before spring b reak)

15-410,S'083

Outline

Last timeLast time
� Partial memory residence (demand paging) in action
� The task of the page fault handler
� Fun big speed hacks
� Sharing memory regions & files

TodayToday
� The mysterious TLB
� Page replacement policies

15-410,S'084

Double Trouble? Triple Trouble?

Program requests memory accessProgram requests memory access

Processor makes Processor makes twotwo memory accesses! memory accesses!
� Split address into page number, intra-page offset
� Add to page table base register
� Fetch page table entry (PTE) from memory
� Add frame address, intra-page offset
� Fetch data from memory

Can be worse than that...Can be worse than that...
� x86 Page-Directory/Page-Table

� Three physical accesses per virtual access!
� x86-64 has a four-level page-mapping system

15-410,S'085

Translation Lookaside Buffer (TLB)

ProblemProblem
� Cannot afford double/triple/... memory latency

Observation - “locality of reference”Observation - “locality of reference”
� Program often accesses “nearby” memory
� Next instruction often on same page as current

instruction
� Next byte of string often on same page as current b yte
� (“Array good, linked list bad”)

SolutionSolution
� Page-map hardware caches virtual-to-physical mappings

� Small, fast on-chip memory
� “Free” in comparison to slow off-chip memory

15-410,S'086

Simplest Possible TLB

ApproachApproach
� Remember the most-recent virtual-to-physical transl ation

� (obtained from, e.g., Page Directory + Page Table)
� See if next memory access is to same page

� If so, skip PD/PT memory traffic; use same frame
� 3X speedup, cost is two 20-bit registers

» “Great work if you can get it”

15-410,S'087

Simplest Possible TLB

P1 Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
....

P2
f08

�f07�
....

Page
Directory

15-410,S'088

Simplest Possible TLB

P1 Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
....

P2
f08

�f07�
....

Page
Directory

15-410,S'089

Simplest Possible TLB

P1 Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
....

P2
f08

�f07�
....

Page
Directory

f34802A5

15-410,S'0810

TLB “Hit”

Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
........

f08
f07
....

Page
Directory

f34802A5

802A5

15-410,S'0811

TLB “Miss”

Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
........

f08
f07
....

Page
Directory

f34802A5

802A4

15-410,S'0812

TLB “Refill”

P1 Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
....

P2
f08

�f07�
....

Page
Directory

f25802A4

15-410,S'0813

Simplest Possible TLB

Can you think of a “pathological” instruction?Can you think of a “pathological” instruction?
� What would it take to “break” a 1-entry TLB?

How many TLB entries do we need, anyway?How many TLB entries do we need, anyway?

15-410,S'0814

TLB vs. Context Switch

After we've been running a while...After we've been running a while...
� ...the TLB is “hot” - full of page � frame translations

Interrupt!Interrupt!
� Some device is done...
� ...should switch to some other task...
� ...what are the parts of context switch, again?

� General-purpose registers
� ...?

15-410,S'0815

TLB vs. Context Switch

After we've been running a while...After we've been running a while...
� ...the TLB is “hot” - full of page �frame translations

Interrupt!Interrupt!
� Some device is done...
� ...should switch to some other task...
� ...what are the parts of context switch, again?

� General-purpose registers
� Page Table Base Register
� ...?

15-410,S'0816

TLB vs. Context Switch

After we've been running a while...After we've been running a while...
� ...the TLB is “hot” - full of page �frame translations

Interrupt!Interrupt!
� Some device is done...
� ...should switch to some other task...
� ...what are the parts of context switch, again?

� General-purpose registers
� Page Table Base Register
� Entire contents of TLB!!

» (why?)

15-410,S'0817

x86 TLB Flush

1. Declare new page directory (set %cr3)1. Declare new page directory (set %cr3)
� Clears every entry in TLB (whoosh!)

� Footnote: doesn't clear “global” pages...
» Which pages might be “global”?

2. INVLPG instruction2. INVLPG instruction
� Invalidates TLB entry of one specific page
� Is that more efficient or less?

15-410,S'0818

x86 Type Theory – Final Version

Instruction Instruction �� segment selector segment selector
� [PUSHL specifies selector in %SS]

Process Process �� (selector (selector �� (base,limit)) (base,limit))
� [Global,Local Descriptor Tables]

Segment base, address Segment base, address �� linear address linear address

TLB: linear address TLB: linear address �� physical address, or... physical address, or...

Process Process �� (linear address high (linear address high �� page table) page table)

Page Table: linear address middle Page Table: linear address middle �� frame address frame address

Memory: frame address, offset Memory: frame address, offset ��

15-410,S'0819

Is there another way?

That seems That seems really complicatedreally complicated
� Is that hardware monster really optimal for every O S and

program mix?
� “The only way to win is not to play?”

Is there another way?Is there another way?
� Could we have no page tables?
� How would the hardware map virtual to physical???

15-410,S'0820

Software-loaded TLBs

ReasoningReasoning
� We need a TLB “for performance reasons”
� OS defines each process's memory structure

� Which memory regions, permissions
� Lots of processes share frames of /bin/bash!

� Hardware page-mapping unit imposes its own ideas
� Why impose a semantic middle-man?

ApproachApproach
� TLB contains subset of mappings
� OS knows the rest
� TLB miss generates special trap
� OS quickly fills in correct v �p mapping

15-410,S'0821

Software TLB features

Mapping entries can be computed many waysMapping entries can be computed many ways
� Imagine a system with one process memory size

� TLB miss becomes a matter of arithmetic

Mapping entries can be “locked” in TLBMapping entries can be “locked” in TLB
� Good idea to lock the TLB-miss handler's TLB entry. ..
� Great for real-time systems

Further readingFurther reading
� http://yarchive.net/comp/software_tlb.html

Software TLBsSoftware TLBs
� PowerPC 603, 400-series (but NOT 7xx/9xx)

15-410,S'0822

TLB vs. Project 3

x86 has a nice, automatic TLBx86 has a nice, automatic TLB
� Hardware page-mapper fills it for you
� Activating new page directory flushes TLB automatic ally
� What could be easier?

It's not It's not totallytotally automatic automatic
� Something “natural” in your kernel may confuse it.. .

TLB debugging in SimicsTLB debugging in Simics
� logical-to-physical (l2p) command
� cpu0_tlb.info, cpu0_tlb.status

� More bits “trying to tell you something”
� [INVLPG issues with Simics 1. Simics 2, 3 seem ok]

15-410,S'0823

Page Replacement/Page Eviction

Process always want Process always want moremore memory frames memory frames
� Explicit deallocation is rare
� Page faults are implicit allocations

System inevitably runs out of framesSystem inevitably runs out of frames

Solution outlineSolution outline
� Pick a frame, store contents to disk
� Transfer ownership to new process
� Service fault using this frame

15-410,S'0824

Pick a Frame

Two-level approachTwo-level approach
� Determine # frames each process “deserves”
� “Process” chooses which frame is least-valuable

� Most OS's: kernel actually does the choosing

System-wide approachSystem-wide approach
� Determine globally-least-useful frame

15-410,S'0825

Store Contents to Disk

Where does it belong?Where does it belong?
� Allocate backing store for each page

� What if we run out?

Must we Must we reallyreally store it? store it?
� Read-only code/data: no!

� Can re-fetch from executable
� Saves paging space & disk-write delay
� But file-system read() may be slower than paging-di sk read

� Not modified since last page-in: no!
� Hardware typically provides “ page-dirty ” bit in PTE
� Cheap to “store” a page with dirty==0

15-410,S'0826

Page Eviction Policies

Don't try these at homeDon't try these at home
� FIFO
� Optimal
� LRU

PracticalPractical
� LRU approximation

Current ResearchCurrent Research
� ARC (Adaptive Replacement Cache)
� CAR (Clock with Adaptive Replacement)
� CART (CAR with Temporal Filtering)

15-410,S'0827

Page Eviction Policies

Don't try these at homeDon't try these at home
� FIFO
� Optimal
� LRU

PracticalPractical
� LRU approximation

Current ResearchCurrent Research
� ARC (Adaptive Replacement Cache)
� CAR (Clock with Adaptive Replacement)
� CART (CAR with Temporal Filtering)
� CARTHAGE (CART with Hilarious AppendaGE)

15-410,S'0828

FIFO Page Replacement

ConceptConcept
� Queue of all pages – named as (task id, virtual add ress)
� Page added to tail of queue when first given a fram e
� Always evict oldest page (head of queue)

EvaluationEvaluation
� Fast to “pick a page”
� Stupid

� Will indeed evict old unused startup-code page
� But guaranteed to eventually evict process's favorite page

too!

15-410,S'0829

Optimal Page Replacement

ConceptConcept
� Evict whichever page will be referenced latest

� “Buy the most time” until next page fault

EvaluationEvaluation
� Requires perfect prediction of program execution
� Impossible to implement

So?So?
� Used as upper bound in simulation studies

15-410,S'0830

LRU Page Replacement

ConceptConcept
� Evict Least-Recently-U sed page
� “Past performance may not predict future results”

� ...but it's an important hint!

EvaluationEvaluation
� Would probably be reasonably accurate
� LRU is computable without a fortune teller
� Bookkeeping very expensive

� (right?)

15-410,S'0831

LRU Page Replacement

ConceptConcept
� Evict Least-Recently-U sed page
� “Past performance may not predict future results”

� ...but it's an important hint!

EvaluationEvaluation
� Would probably be reasonably accurate
� LRU is computable without a fortune teller
� Bookkeeping very expensive

� Hardware must sequence-number every page reference
» Evictor must scan every page's sequence number

� Or you can “just” do a doubly-linked-list operation per ref

15-410,S'0832

Approximating LRU

Hybrid hardware/software approachHybrid hardware/software approach
� 1 reference bit per page table entry
� OS sets reference = 0 for all pages
� Hardware sets reference=1 when PTE is used in looku p
� OS periodically scans

� (reference == 1) � “recently used”
� Result:

� Hardware sloppily partitions memory into “recent” v s. “old”
� Software periodically samples, makes decisions

15-410,S'0833

Approximating LRU

““ Second-chance” algorithmSecond-chance” algorithm
� Use stupid FIFO queue to choose victim candidate pa ge
� reference == 0?

� not “recently” used, evict page, steal its frame
� reference == 1?

� “somewhat-recently used” - don't evict page this ti me
� append page to rear of queue (“second chance”)
� set reference = 0

» Process must use page again “soon” for it to be ski pped

ApproximationApproximation
� Observe that queue is randomly sorted

� We are evicting not-recently-used, not least -recently-used

15-410,S'0834

Approximating LRU

““ Clock” algorithmClock” algorithm
� Observe: “Page queue” requires linked list

� Extra memory traffic to update pointers
� Observe: Page queue's order is essentially random

� Doesn't add anything to accuracy
� Revision

� Don't have a queue of pages
� Just treat memory as a circular array

15-410,S'0835

Clock Algorithm

static int nextpage = 0;

boolean reference[NPAGES];

int choose_victim() {

 while (reference[nextpage]) {

 reference[nextpage] = false;

 nextpage = (nextpage+1) % NPAGES;

 }

 return(nextpage);

}

15-410,S'0836

“Page Buffering”

ProblemProblem
� Don't want to evict pages only after a fault needs a frame
� Must wait for disk write before launching disk read (slow!)

““ Assume a blank page...”Assume a blank page...”
� Page fault handler can be much faster

““ page-out daemon”page-out daemon”
� Scans system for dirty pages

� Write to disk
� Clear dirty bit
� Page can be instantly evicted later

� When to scan, how many to store? Indeed...

15-410,S'0837

Frame Allocation

How many frames should a process have?How many frames should a process have?

Minimum allocationMinimum allocation
� Examine worst-case instruction

� Can multi-byte instruction cross page boundary?
� Can memory parameter cross page boundary?
� How many memory parameters?
� Indirect pointers?

15-410,S'0838

“Fair” Frame Allocation

Equal allocationEqual allocation
� Every process gets same number of frames

� “Fair” - in a sense
� Probably wasteful

Proportional allocationProportional allocation
� Every process gets same percentage of residence

� (Everybody 83% resident, larger processes get more frames)
� “Fair” - in a different sense
� Probably the right approach

» Theoretically, encourages greediness

15-410,S'0839

Thrashing

ProblemProblem
� Process needs N frames...

� Repeatedly rendering image to video memory
� Must be able to have all “world data” resident 20x/ second

� ...but OS provides N-1, N/2, etc.

ResultResult
� Every page OS evicts generates “immediate” fault
� More time spent paging than executing
� Paging disk constantly busy

� Denial of “paging service” to other processes
� Widespread unhappiness

15-410,S'0840

“Working-Set” Allocation Model

ApproachApproach
� Determine necessary # frames for each process

� “Working set” - size of frame set you need to get w ork done
� If unavailable, swap entire process out

� (later, swap some other process entirely out)

How to measure working set?How to measure working set?
� Periodically scan all reference bits of process's p ages
� Combine multiple scans (see text)

EvaluationEvaluation
� Expensive
� Can we approximate it?

15-410,S'0841

Page-Fault Frequency Approach

ApproachApproach
� Recall, “thrashing” == “excessive” paging
� Adjust per-process frame quotas to balance fault ra tes

� System-wide “average page-fault rate” (10 faults/se cond)
� Process A fault rate “too high”: increase frame quo ta
� Process A fault rate “too low”: reduce frame quota

What if quota increase doesn't help?What if quota increase doesn't help?
� If giving you some more frames didn't help, maybe you

need a lot more frames than you have...
� Swap you out entirely for a while

15-410,S'0842

Program Optimizations

Is paging an “OS problem”?Is paging an “OS problem”?
� Can a programmer reduce working-set size?

Locality depends on data structuresLocality depends on data structures
� Arrays encourage sequential accesses

� Many references to same page
� Predictable access to next page

� Random pointer data structures scatter references

Compiler & linker can help tooCompiler & linker can help too
� Don't split a routine across two pages
� Place helper functions on same page as main routine

Effects can be Effects can be dramaticdramatic

15-410,S'0843

Summary

The mysterious TLBThe mysterious TLB
� No longer mysterious

Page-replacement policiesPage-replacement policies
� The eviction problem
� Sample policies

� For real: LRU approximation with hardware support
� Page buffering
� Frame Allocation (process page quotas)

Definition & use ofDefinition & use of
� Dirty bit, reference bit

Virtual-memory usage optimizationsVirtual-memory usage optimizations

