
15-410, S'081

Source Control
Feb. 6, 2008

Dave EckhardtDave Eckhardt

Roger DannenbergRoger Dannenberg

Zach Anderson (S '03)Zach Anderson (S '03)

L11b_PRCS

15-410
“...Goals: Time Travel, Parallel Universes...”

15-410, S'082

Outline

MotivationMotivation

Repository vs. Working DirectoryRepository vs. Working Directory

Conflicts and MergingConflicts and Merging

BranchingBranching

PRCS – Project Revision Control SystemPRCS – Project Revision Control System

15-410, S'083

Goals

Working together should be easyWorking together should be easy

Time travelTime travel
� Useful for challenging patents
� Very useful for reverting from a

sleepless hack session

Parallel universesParallel universes
� Experimental universes
� Product-support universes

15-410, S'084

Goal: Shared Workspace

Reduce development latency via parallelismReduce development latency via parallelism
� [But: Brooks, Mythical Man-Month]

Alice

Charlie

Bob

Devon

awesome.c

15-410, S'085

Goal: Time Travel

Retrieving old versions should be easy.Retrieving old versions should be easy.

Once Upon A Time…

Alice: What happened to the code? It doesn’t work.

Charlie: Oh, I made some changes. My code is 1337!

Alice: Rawr! I want the code from last Tuesday!

15-410, S'086

Goal: Parallel Universes

Safe process for implementing new Safe process for implementing new
features.features.
� Develop bell in one universe
� Develop whistle in another
� Don't inflict B's core dumps on W
� Eventually produce bell-and-whistle

release

15-410, S'087

How?

Keep a global repository for the project.Keep a global repository for the project.

15-410, S'088

The Repository

Version / Revision / ConfigurationVersion / Revision / Configuration
� Contents of some files at a particular point in

time
� aka “Snapshot”

ProjectProject
� A “sequence” of versions

� (not really)

RepositoryRepository
� Directory where projects are stored

15-410, S'089

The Repository

Stored in group-accessible locationStored in group-accessible location
� Old way: file system
� Modern way: “repository server”

Versions Versions in repositoryin repository visible group-wide visible group-wide
� Whoever has read access
� “Commit access” often separate

15-410, S'0810

How?

Keep a global repository for the project.Keep a global repository for the project.

Each user keeps a working directory.Each user keeps a working directory.

15-410, S'0811

The Working Directory

Many names (“sandbox”)Many names (“sandbox”)

Where revisions happenWhere revisions happen

Typically belongs to Typically belongs to oneone user user

Versions are Versions are checked outchecked out to here to here

New versions are New versions are checked inchecked in from here from here

15-410, S'0812

How?

Keep a global repository for the project.Keep a global repository for the project.

Each user keeps a working directory.Each user keeps a working directory.

Concepts of Concepts of checking outchecking out , and , and checking inchecking in

15-410, S'0813

Checking Out. Checking In.

Checking out Checking out
� A version is copied from the repository

� Typically “Check out the latest”
� Or: “Revision 3.1.4”, “Yesterday noon”

WorkWork
� Edit, add, remove, rename files

Checking in Checking in
� Working directory � repository atomically
� Result: new version

15-410, S'0814

Checking Out. Checking In.

Repository Working Directory

 v0.1 v0.1 copyv0.1
check out

15-410, S'0815

Checking Out. Checking In.

Repository Working Directory

 v0.1

v0.1++

v0.1 copy

mutate

v0.1

15-410, S'0816

Checking Out. Checking In.

Repository Working Directory

 v0.1

 v0.2 v0.1++v0.2

v0.1

check in

15-410, S'0817

How?

Keep a global repository for the project.Keep a global repository for the project.

Each user keeps a working directory.Each user keeps a working directory.

Concepts of Concepts of checking outchecking out , and , and checking inchecking in

Mechanisms for Mechanisms for mergingmerging

15-410, S'0818

Conflicts and Merging

Two people check out.Two people check out.
� Both modify foo.c

Each wants to check in a new version.Each wants to check in a new version.
� Whose is the correct new version?

15-410, S'0819

Conflicts and Merging

ConflictConflict
� Independent changes which “overlap”
� Textual overlap detected by revision

control
� Semantic conflict cannot be

Merge displays conflicting updates per fileMerge displays conflicting updates per file

Pick which code goes into the new versionPick which code goes into the new version
� A, B, NOTA

Story now, real-life example laterStory now, real-life example later

15-410, S'0820

Alice Begins Work
RepositoryAlice Bob

v0.2
v0.2
copy

v0.2
fix b#1

15-410, S'0821

Bob Arrives, Checks Out
RepositoryAlice Bob

v0.2
v0.2
copy

v0.2
copy

v0.2
fix b#1

15-410, S'0822

Alice Commits, Bob Has Coffee
RepositoryAlice Bob

v0.2

v0.3

v0.2
copy

v0.2
copy

v0.2
fix b#1

15-410, S'0823

Bob Fixes Something Too
RepositoryAlice Bob

v0.2

v0.3 v0.2
fix b#7

v0.2
copy

v0.2
copy

v0.2
fix b#1

15-410, S'0824

Wrong Outcome
RepositoryAlice Bob

v0.2

v0.3 v0.2
fix b#7

v0.2
copy

v0.2
copy

v0.2
fix b#1 v0.3

15-410, S'0825

“Arguably Less Wrong”
RepositoryAlice Bob

v0.2

v0.3

v0.4

v0.2
fix b#7

v0.2
copy

v0.2
copy

v0.2
fix b#1

15-410, S'0826

Merge, Bob, Merge!
RepositoryAlice Bob

v0.2

v0.3 v0.2
fix b#7

v0.2
copy

v0.2
copy

v0.2
fix b#1

fix b#1
fix b#7

15-410, S'0827

Committing Genuine Progress
RepositoryAlice Bob

v0.2

v0.3

v0.4

v0.2
fix b#7

v0.2
copy

v0.2
copy

v0.2
fix b#1

fix b#1
fix b#7

15-410, S'0828

How?

Keep a global repository for the project.Keep a global repository for the project.

Each user keeps a working directory.Each user keeps a working directory.

Concepts of Concepts of checking outchecking out , and , and checking inchecking in

Mechanisms for Mechanisms for mergingmerging

Mechanisms for Mechanisms for branchingbranching

15-410, S'0829

Branching

A branch is a A branch is a sequence of versionssequence of versions
� (not really...)

Changes on one branch don't affect othersChanges on one branch don't affect others

Project may contain many branchesProject may contain many branches

Why branch?Why branch?
� Implement a new “major” feature
� Begin a temporary independent sequence of

development

15-410, S'0830

Branching

 v0.3 v1.1branch

 v0.37 v1.42

 v1.43

merge

The actual branching
and merging take
place in a particular
user's working
directory, but this is
what such a
sequence would look
like to the repository.

15-410, S'0831

Branch Life Cycle

““ The Trunk”The Trunk”
� “Release 1.0”, “Release 2.0”, ...

Release 1.0 Release 1.0 maintenancemaintenance branch branch
� After 1.0: 1.0.1, 1.0.2, ...
� Bug-fix updates as long as 1.0 has users

Internal Internal developmentdevelopment branches branches
� 1.1.1, 1.1.2, ...
� Probably 1.1.1.client, 1.1.1.server

15-410, S'0832

Branch Life Cycle

““ Development excursion” branch modelDevelopment excursion” branch model
� Create branch to fix bug #99 in v1.1
� One or more people make 7 changes
� Branch “collapses” back to trunk

� Merge 1.1.bug99.7 against 1.1.12
� Result: 1.1.13
� There will be no 1.1.bug99.8

� In some systems, there can't be

15-410, S'0833

Branch Life Cycle

““ Controlled isolation” branch modelControlled isolation” branch model
� Server people work on 1.3.server

� Fix server code
� Run stable client test suite vs. new server

� Client people work on 1.3.client
� Fix client code
� Run new client test suite vs. stable server

� Note
� Branches do not collapse after one merge!

15-410, S'0834

Branch Life Cycle

““ Controlled isolation” branch modelControlled isolation” branch model
� Periodic merges - example

� 1.3.server.45, 1.3.12 � 1.3.13
� 1.3.client.112, 1.3.13 � 1.3.14
� Each group can keep working while one

person “pushes up” a version to the parent
� When should server team “pull down”

1.3.14 changes?
� 1.3.server.47, 1.3.14 � 1.3.server.48?
� 1.3.server.99, 1.3.14 � 1.3.server.100?
� Efficiency now vs. merge cost later...

15-410, S'0835

Branch Life Cycle

Successful development branchSuccessful development branch
� Merged back to parent
� No further versions

Unsuccessful development branchUnsuccessful development branch
� Some changes pulled out?
� No further versions

Maintenance branchMaintenance branch
� “End of Life”: No further versions

15-410, S'0836

Are Branches Deleted?

Consider the repository “data structure”Consider the repository “data structure”
� Revisions of each file (coded as deltas)
� Revisions of the directory tree

Branch deleteBranch delete
� Complicated data structure update

� [Not a well-tested code path]
� Generally a bad idea

� History could always be useful later...

15-410, S'0837

Source Control Opinions
CVSCVS

� very widely used
� mature, lots of features
� default behavior often

wrong

OpenCMOpenCM
� security-conscious design
� not widely used

BitKeeperBitKeeper
� Favored by Linus

Torvalds
� “Special” license

restrictions

SubVersion (svn)SubVersion (svn)
� SVN > CVS (design)
� SVN > CVS (size)
� Doesn't work in AFS
� Yes, it does
� No, it doesn't

PerForcePerForce
� commercial
� reasonable design
� works well
� big server

15-410, S'0838

Source Control Opinions
OthersOthers

� Mercurial (“hg”)
� Merge-once branches

� Bazaar (“bzr”)
� git

� Recently revamped
� Monotone
� arch
� darcs

GenerallyGenerally
� Promising plans
� Ready yet?

15-410, S'0839

Dave's Raves

CVSCVS
� Commit: atomic if you are careful
� Named snapshots: if you are careful
� Branching: works if you are careful
� Core operations require care & expertise!!!

Many commercial productsMany commercial products
� Require full-time person, huge machine
� Punitive click-click-click GUI
� Poor understanding of data structure

requirements

15-410, S'0840

Recommendation for 15-410

You can use CVS if you're used to itYou can use CVS if you're used to it
� Also: SVN, hg, arch, ...

PRCS, Project Revision Control SystemPRCS, Project Revision Control System
� Small “conceptual throw weight”
� Easy to use, state is visible (single text file)
� No bells & whistles

Setting to learn revision control Setting to learn revision control conceptsconcepts
� Quick start when joining research project/job

� (They will probably not be using PRCS)

15-410, S'0841

Getting Started

Add 410 programs to your path (.bashrc):Add 410 programs to your path (.bashrc):
� $ export

PATH=/afs/cs.cmu.edu/academic/class/15410
-s08/bin:$PATH

Set environment variables (also .bashrc):Set environment variables (also .bashrc):
� $ export

PRCS_REPOSITORY=/afs/cs.cmu.edu/academic/
class/15410-s08-users/group-99/REPOSITORY

� $ export PRCS_LOGQUERY=1

15-410, S'0842

Creating A New Project

In a blank working directory:In a blank working directory:
$ prcs checkout P

� P is the name of the new project

Creates a file: P.prjCreates a file: P.prj

15-410, S'0843

The Project File

;; -*- Prcs -*-
(Created-By-Prcs-Version 1 3 0)
(Project-Description "")
(Project-Version P 0 0)
(Parent-Version -*- -*- -*-)
(Version-Log "Empty project.")
(New-Version-Log "")
(Checkin-Time "Wed, 15 Jan 2003 21:38:47 -0500")
(Checkin-Login zra)
(Populate-Ignore ())
(Project-Keywords)
(Files
;; This is a comment. Fill in files here.
;; For example: (prcs/checkout.cc ())
)
(Merge-Parents)
(New-Merge-Parents)

Description of project.

Make notes about
changes before
checking in a new
version

List of files

15-410, S'0844

Using the Project File

Adding FilesAdding Files
$ prcs populate P file1 file2 … fileN

� To add every file in a directory
$ prcs populate P
� Rarely what you want!!!

Removing, renaming filesRemoving, renaming files
� See course web

15-410, S'0845

Checking In

Checking inChecking in
$ prcs checkin P

� Check-in will fail if there are conflicts.
� Hey, we forgot to talk about conflicts!

15-410, S'0846

Conflicts and Merging

Suppose this file is in the repository for Suppose this file is in the repository for
project P:project P:

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 printf("Hello World!\n");
 return 0;
}

15-410, S'0847

Conflicts and Merging

Suppose Alice and Charlie check out this Suppose Alice and Charlie check out this
version, and make changes:version, and make changes:

Alice's Version
#include <stdlib.h>
#include <stdio.h>

#define SUPER 0

int main(void)
{
 /* prints "Hello World"
 to stdout */
 printf("Hello World!\n");
 return SUPER;
}

Charlie's Version
#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 /* this, like, says
 hello, and stuff */
 printf("Hello Hercules!\n");
 return 42;
}

15-410, S'0848

Conflicts and Merging

Suppose Alice checks in firstSuppose Alice checks in first
$ prcs checkin

Now Charlie must perform a mergeNow Charlie must perform a merge
$ prcs checkin � will fail
$ prcs merge

� Default merge option performs a CVS-like
merge.

$ prcs checkin � should work now

15-410, S'0849

Merge Mutilation

#include <stdlib.h>
#include <stdio.h>

#define SUPER 0

int main(void)
{
<<< 0.2(w)/hello.c Wed, 19 Feb 2003 21:26:36 -0500 zra (P/0_hello.c 1.2 644)
 /* this, like, says hello, and stuff */
 printf("Hello Hercules!");
 return 42;
===
 /* prints "Hello World" to stdout */
 printf("Hello World!");
 return SUPER;
>>> 0.3/hello.c Wed, 19 Feb 2003 21:36:53 -0500 zra (P/0_hello.c 1.3 644)
}

15-410, S'0850

Conflicts and Merging

Pick/create the desired versionPick/create the desired version
� Check that into the repository.

15-410, S'0851

Branching

To create the first version of a new branch:To create the first version of a new branch:
$ prcs checkin -rExperimental_VM

Kern.prj

To merge with branch X version 37:To merge with branch X version 37:
$ prcs merge -rX.37 Kern.prj

15-410, S'0852

Information

To get a version summary about P:To get a version summary about P:
$ prcs info P

� with version logs:
$ prcs info -l P

15-410, S'0853

Suggestions

Develop a convention for naming revisionsDevelop a convention for naming revisions
� Date
� Type of revision(bug-fix, commenting, etc.)
� Short phrase

When to branch?When to branch?
� Bug fixing?

� Check out, fix, check in to same branch
� Trying COW fork since regular fork works?

� Branching probably a good idea.
� “Any time you want commits kept secret”

15-410, S'0854

Summary

We can now:We can now:
� Create projects
� Check source in/out
� Merge, and
� Branch

See PRCS documentationSee PRCS documentation
� Ours, official – on Projects web page
� Complete list of commands
� Useful options for each command.

