
15-410, S’081

The Thread
Jan. 28, 2008

Roger DannenbergRoger Dannenberg
Dave Dave EckhardtEckhardt

L07_Thread

15-410

“Real concurrency – in which one program actually
continues to function while you call up and use
another – is more amazing but of small use to the
average person.  How many programs do you have
that  take more than a few seconds to perform any
task?” – NYT, 4/25/1989



15-410, S’082

Synchronization

Project 1Project 1
 By end of Wednesday ...

 Console (output) should really be working
 Should have some progress for kbd, timer

» Should really have at least “solid design”
» Better to have handled one interrupt once

Write good codeWrite good code
 Console driver will be used (and extended) in P3



15-410, S’083

Book Report

Read the Read the ““handouthandout””
Browse the already-approved listBrowse the already-approved list
Pick something (soon)Pick something (soon)

 “Don't make me stop the car...”

Read a bit before you sleep at nightRead a bit before you sleep at night
 or: before you sleep in the morning
 and/or: Thanksgiving break / Spring break

Assignment recommended by previous OS students!Assignment recommended by previous OS students!
 They recommend starting early, too



15-410, S’084

Road Map

Thread lectureThread lecture
Synchronization lecturesSynchronization lectures

 Probably three

Yield lectureYield lecture
This is importantThis is important

 When you leave here, you will use threads
 Understanding threads will help you understand the

kernel

Please make sure you Please make sure you understandunderstand threads threads
 We'll try to help by assigning you P2



15-410, S’085

Outline

Textbook chaptersTextbook chapters
 Already: Chapters 1 through 3
 Today: Chapter 4 (roughly)
 Soon: Chapters 6 & 7

 Transactions (6.9) will be deferred
 Reading list on schedule page on web site



15-410, S’086

Outline

Thread = schedulable registersThread = schedulable registers
 (that's all there is)

Why threads?Why threads?
Thread Thread flavors flavors (ratios)(ratios)
(Against) cancellation(Against) cancellation
Race conditionsRace conditions

 1 simple, 1 ouch
 Make sure you really understand this



15-410, S’087

Single-threaded Process

Stack

Code
Data
Heap

Registers

stdin

stdout

timer



15-410, S’088

Multi-threaded Process

stdin

stdout

timer
Code
Data
Heap

Stack Registers
Stack Registers
Stack Registers



15-410, S’089

What does that mean?

Three stacksThree stacks
 Three sets of “local variables”

Three register setsThree register sets
 Three stack pointers
 Three %eax's (etc.)

Three Three schedulable RAM schedulable RAM mutatorsmutators
 (heartfelt but partial apologies to the ML crowd)

Three potential bad interactionsThree potential bad interactions
 A/B, A/C, B/C ... this pattern gets worse fast...



15-410, S’0810

Why threads?

Shared access to data structuresShared access to data structures
ResponsivenessResponsiveness
Speedup on multiprocessorsSpeedup on multiprocessors



15-410, S’0811

Shared access to data structures

Database server for multiple bank branchesDatabase server for multiple bank branches
 Verify multiple rules are followed

 Account balance
 Daily withdrawal limit

 Multi-account operations (transfer)
 Many accesses, each modifies tiny fraction of database

Server for a multi-player gameServer for a multi-player game
 Many players
 Access (& update) shared world state

 Scan multiple objects
 Update one or two objects



15-410, S’0812

Shared access to data structures

Process per player?Process per player?
 Processes share objects only via system calls
 Hard to make game objects = operating system objects

Process per game object?Process per game object?
 “Scan multiple objects, update one”
 Lots of message passing between processes
 Lots of memory wasted for lots of processes
 Slow



15-410, S’0813

Shared access to data structures

ThreadThread per player per player
 Game objects inside single memory address space
 Each thread can access & update game objects
 Shared access to OS objects (files)

Thread-switch is cheapThread-switch is cheap
 Store N registers
 Load N registers



15-410, S’0814

Responsiveness

““CancelCancel”” button  button vsvs. decompressing large JPEG. decompressing large JPEG
 Handle mouse click during 10-second process

 Map (x,y) to “cancel button” area
 Change color / animate shadow / squeak / ...
 Verify that button-release happens in button area of screen

 ...without JPEG decompressor understanding clicks
 Actually stopping the decompressor is a separate issue

 Threads allow the user to register intent while it's running



15-410, S’0815

Multiprocessor speedup

More CPUs can't help a single-threaded process!More CPUs can't help a single-threaded process!
PhotoShop PhotoShop color color dither operationdither operation

 Divide image into regions
 One dither thread per CPU
 Can (sometimes) get linear speedup



15-410, S’0816

Kinds of threads

User-space (N:1)User-space (N:1)
Kernel threads (1:1)Kernel threads (1:1)
Many-to-many (M :N)Many-to-many (M :N)



15-410, S’0817

User-space threads (N:1)

Internal threadingInternal threading
 Thread library adds

threads to a process
 Thread switch “just

swaps registers”
 Small piece of asm code
 Maybe called yield()

Code
Data
Heap

Stack
Stack Registers
Stack



15-410, S’0818

User-space threads (N:1)

+ No change to operating system+ No change to operating system
- Any system call probably blocks all - Any system call probably blocks all ““threadsthreads””

 “The process” makes a system call
 Kernel blocks “the process”
 (special non-blocking system calls can help)

- - ““Cooperative schedulingCooperative scheduling”” awkward/insufficient awkward/insufficient
 Must manually insert many calls to yield()

- Cannot go faster on multiprocessor machines- Cannot go faster on multiprocessor machines



15-410, S’0819

Pure kernel threads (1:1)

OS-supported threadingOS-supported threading
 OS knows

thread/process
ownership

 Memory regions shared
& reference-counted

Code
Data
Heap

Stack Registers
Stack Registers
Stack Registers



15-410, S’0820

Pure kernel threads (1:1)

““Every thread is sacredEvery thread is sacred””
 Kernel-managed register set
 Kernel stack for when the thread is running kernel code
 “Real” (timer-triggered) scheduling

FeaturesFeatures
+ Program runs faster on multiprocessor
+ CPU-hog threads don't get all the CPU time
- User-space libraries must be rewritten to be “thread safe”
- Requires more kernel memory

 1 PCB ⇒ 1 TCB + N tCB's,
 1 k-stack ⇒ N k-stacks



15-410, S’0821

Many-to-many (M:N)

Middle groundMiddle ground
 OS provides kernel

threads
 M user threads share N

kernel threads

Code
Data
Heap

Stack
Stack Registers
Stack Registers



15-410, S’0822

Many-to-many (M:N)

Sharing patternsSharing patterns
 Dedicated

 User thread 12 owns kernel thread 1
 Shared

 1 kernel thread per hardware CPU
 Each kernel thread executes next runnable user thread

 Many variations, see text

FeaturesFeatures
 Great when all the schedulers work together as you

expected!



15-410, S’0823

(Against) Thread Cancellation

Thread cancellationThread cancellation
 We don't want the result of that computation

 (“Cancel button”)
 Two kinds – “asynchronous”, “deferred”

Asynchronous (immediate) cancellationAsynchronous (immediate) cancellation
 Stop execution now

 Run 0 more instructions
 Free stack, registers
 Poof!

 Hard to garbage-collect resources (open files, ...)
 Invalidates data structure consistency!



15-410, S’0824

(Against) Thread Cancellation

Deferred ("pretty please") cancellationDeferred ("pretty please") cancellation
 Write down “Dear Thread #314, Please go away.”
 Threads must check for cancellation
 Or define safe cancellation points

 “Any time I call close() it's ok to zap me”

The only safe way (IMHO)The only safe way (IMHO)



15-410, S’0825

Race conditions

What you thinkWhat you think
ticket = next_ticket++;   /* 0 ⇒ 1 */

What really happens (in general)What really happens (in general)
ticket = temp = next_ticket;   /* 0 */
++temp;       /* 1, but not visible */
next_ticket = temp; /* 1 is visible */



15-410, S’0826

Murphy' s Law (of threading)

The world may The world may arbitrarily interleavearbitrarily interleave execution execution
 Multiprocessor

 N threads executing instructions at the same time
 Of course effects are interleaved!

 Uniprocessor
 Only one thread running at a time...
 But N threads runnable, timer counting down toward zero...

The world will choose the The world will choose the most painfulmost painful interleaving interleaving
 “Once chance in a million” happens every minute



15-410, S’0827

Race Condition – Your Hope

T0 has ticket 0, T1 has ticket 1.
next_tkt has value 2.  Your boss is
happy.

22n_tkt n_tkt = = tmptmp;;

22++++tmptmp;;

11tkt tkt = = tmp tmp = = n_tktn_tkt;;

11n_tkt n_tkt = = tmptmp;;

11++++tmptmp;;

00tkt tkt = = tmp tmp = = n_nktn_nkt;;

T1T1T0T0



15-410, S’0828

Race Condition – Your Bad Luck

T0 has ticket 0, T1 has ticket 0.
Next_tkt has value 1. Your boss is
not entirely happy.

11n_tkt n_tkt = = tmptmp;;

11n_tkt n_tkt = = tmptmp;;

11++++tmptmp;;

11++++tmptmp;;

00tkt tkt = = tmp tmp = = n_tktn_tkt;;

00tkt tkt = = tmp tmp = = n_nktn_nkt;;

T1T1T0T0



15-410, S’0829

What happened?

Each thread did Each thread did ““something reasonablesomething reasonable””
 ...assuming no other thread were touching those objects
 ...that is, assuming “mutual exclusion”

The world is cruelThe world is cruel
 Any possible scheduling mix will happen sometime
 The one you fear will happen...
 The one you didn't think of will happen...



15-410, S’0830

The #! shell-script hack

What's a What's a ““shell scriptshell script””??
 A file with a bunch of (shell-specific) shell commands

  #!/bin/sh
  echo “My hovercraft is full of eels”
  sleep 10
  exit 0

 Or: a security race-condition just waiting to happen...



15-410, S’0831

The #! shell-script hack

What's "#!"?What's "#!"?
 A venerable hack

You sayYou say
 execl("/foo/script", "script", "arg1", 0);

/foo/script /foo/script ““executable fileexecutable file”” begins... begins...
 #!/bin/sh

The kernel rewrites your system call...The kernel rewrites your system call...
 execl("/bin/sh" "/foo/script" "arg1" , 0);

The shell doesThe shell does
 open("/foo/script", O_RDONLY, 0);



15-410, S’0832

The setuid invention

U.S. Patent #4,135,240U.S. Patent #4,135,240
 Dennis M.  Ritchie
 January 16, 1979

The conceptThe concept
 A program with stored privileges
 When executed, runs with two identities

 invoker's identity
 program owner's identity

 Can switch identities at will
 Open some files as invoker
 Open other files as program-owner



15-410, S’0833

Setuid example - printing a file

GoalsGoals
 Every user can queue files
 Users cannot delete other users' files

SolutionSolution
 Queue directory owned by user printer
 Setuid queue-file program

 Create queue file as user printer
 Copy joe's data as user joe

 Also, setuid remove-file program
 Allows removal only of files you queued

 User printer mediates user joe's queue access



15-410, S’0834

Race condition example

execute /my/exploitexecute /my/exploit

script = open(script = open(““/tmp/lpr/tmp/lpr””););

ln -s ln -s /my/exploit /my/exploit /tmp/lpr/tmp/lpr

rm /tmp/lprrm /tmp/lpr

start start ““/bin/sh /tmp/lpr /bin/sh /tmp/lpr …”…”

[[setuid setuid to user to user ““printerprinter””]]

run run /tmp/lpr/tmp/lpr

ln -s /bin/lpr /tmp/lprln -s /bin/lpr /tmp/lpr

Process 1Process 1Process 0Process 0



15-410, S’0835

What happened?

IntentionIntention
 Assign privileges to program contents

What happened?What happened?
 Privileges were assigned to program name
 Program name was re-bound to different contents

How would you fix this?How would you fix this?



15-410, S’0836

How to solve race conditions?

Carefully analyze operation sequencesCarefully analyze operation sequences
Find Find subsequences subsequences which must be which must be uninterrupteduninterrupted

 “Critical section”

Use a Use a synchronization mechanismsynchronization mechanism
 Next time!



15-410, S’0837

Summary

Thread: What, whyThread: What, why
Thread Thread flavors flavors (ratios)(ratios)
Race conditionsRace conditions

 Make sure you really understand this



15-410, S’0838

Further Reading

Setuid Setuid DemystifiedDemystified
 Hao Chen, David Wagner, Drew Dean
 http://www.cs.berkeley.edu/~daw/papers/setuid-usenix02.pdf
 “Abandon hope all ye who enter here”


