
15-410, S'06- 1 -

Exam #1
Mar. 6, 2006

Dave EckhardtDave Eckhardt

L21_Exam1

15-410
“...“I'll be reasonable as soon as I get everything I want”...”

15-410, S'06- 2 -

Synchronization

Checkpoint 2 – Wednesday, in clusterCheckpoint 2 – Wednesday, in cluster
� Reminder: context switch ≠ interrupt

� Later other things will invoke it too

Upcoming eventsUpcoming events
� 15-412 (Fall)

� If you want more time in the kernel after 410...
� If you want to see what other kernels are like, from the inside

� Summer internship with SCS Facilities?

15-410, S'06- 4 -

A Word on the Final Exam

DisclaimerDisclaimer
� Past performance is not a guarantee of future results

The course will changeThe course will change
� Up to now: “basics” - What you need for Project 3
� Coming: advanced topics

� Design issues
� Things you won't experience via implemention

Examination will change to matchExamination will change to match
� More design questions
� Some things you won't have implemented (text useful)
� Still 3 hours, but more stuff

15-410, S'06- 5 -

Outline

Question 1Question 1

Question 2Question 2

Question 3Question 3

Question 4Question 4

Question 5Question 5

15-410, S'06- 6 -

Q1 – Short Answer

“By the book”“By the book”
� M:N threads
� Starvation

“Write an x86 instruction which accesses text, “Write an x86 instruction which accesses text,
rodata, bss”rodata, bss”
� Key insight: every instruction “accesses” text!
� Need a way to move something from one region to

another
� If a program has no data, then rodata and bss can be on

adjacent pages... hmm...
� PUSHL 8(%EBP) – if your %ESP points into bss
� MOVSL – magic string-move instruction

15-410, S'06- 7 -

Q2 – The Mysterious argv[]

Question asks for “argv[] including the strings”Question asks for “argv[] including the strings”
� Showing just the strings wasn't enough

Question asks for addressesQuestion asks for addresses
� Many solutions without addresses were excessively

abstract

main() has main() has twotwo parameters – argc, argv parameters – argc, argv
� argv[] is an array of pointers to strings
� argv[] is not a bunch of parameters to main()

� stack frames showing lots of pointer parameters
to main() were wrong

15-410, S'06- 8 -

Q2 – The Mysterious argv[]

Smaller issuesSmaller issues
� strings in the heap
� argv[] in the heap
� huge/weird padding between strings

SuggestionsSuggestions
� Some mistakes should not have been possible given

P0
� If you can't draw a picture of something, you might

not understand it
� Groups had this problem in P2
� Skipping pictures is a way to hurt yourself in P3

15-410, S'06- 9 -

Q3 – IRET

Motivations for IRETMotivations for IRET
� Privilege-change case

� “Useful” to atomically switch privilege level and program
counter, since user typically can't run kernel code

� Not the P1 (exam problem) case
� x86 multi-segment fun

� If you're returning from one code segment to another,
“useful” to atomically switch code segment and program
counter, since each is meaningless without the other

� Not the P1 (exam problem) case
» All %CS values are the same – no need to restore %CS

� Not necessarily related to interrupts (there is a “far return”
instruction which undoes a “far call”)

15-410, S'06- 10 -

Q3 – IRET

Our hopes for the questionOur hopes for the question
� What needs to be done?
� What does _____ mean?
� What would happen if _____?

Concern is one stepConcern is one step
� Some concerns can be addressed

15-410, S'06- 11 -

Q3 – IRET

Concerns and responsesConcerns and responses
� An interrupt might happen during the “IRET sequence”

� A new trap frame would be pushed on the stack
� The %EIP in that frame would be in the middle of your “IRET

sequence”
� As long as your %ESP is “reasonable”, this is all ok

� “The trap frame parts are in the wrong order”
� You can move them around

» Push two registers onto the stack
» Yank, XCHG, push
» Restore, restore

15-410, S'06- 12 -

Q3 – IRET

A common approachA common approach
pop %eip
pop %cs
pop %eflags

15-410, S'06- 13 -

Q3 – IRET

A common approachA common approach
pop %eip # typically called “RET”
pop %cs # will this be executed?
pop %eflags # will this be executed?

A common misconceptionA common misconception
� Return from interrupt requires more info than trap frame
� CPU stores the “other information” somewhere else
� The “trap, then return” story needs to work

� If you can take a trap while servicing a trap, you need to
stack the “other information” somewhere... why not use the
stack?

15-410, S'06- 14 -

Q4 – setjmp()/longjmp()

ConceptsConcepts
� What does it mean to be executing a function?

� What is the state of the function?

The todo listThe todo list
� %eip – of setjmp()'s caller
� %esp, %ebp – or everything the caller does will be wrong
� callee-save registers

� setjmp()'s caller is allowed to depend on “setjmp()”
preserving them

� %eax – longjmp()'s param must become setjmp()'s return
value

15-410, S'06- 15 -

Q4 – setjmp()/longjmp()

Common issuesCommon issues
� Save/restore only %eip

� Needs to be setjmp()'s caller's %eip, which is up on the stack
� Restoring only %eip guarantees broken run-time

environment
� Save/restore only %esp – also severely broken
� Missing some registers
� Not quite getting back

P3 suggestionsP3 suggestions
� Written todo list, often derived from pictures

15-410, S'06- 16 -

Q5 – Deadlock / Race

void process_ba(int *workload)
{
 for(int i=0; i< 100; i++) {
 mutex_lock(&mutex_b); /*BA1*/
 mutex_lock(&mutex_a); /*BA2*/
 (*workload)++; /*BA3*/
 mutex_unlock(&mutex_a); /*BA4*/
 mutex_unlock(&mutex_b); /*BA5*/
 }
}

15-410, S'06- 17 -

Q5 – Deadlock / Race

Key conceptsKey concepts
� Deadlock ingredients
� Atomicity versus race conditions

How “try-lock” doesn't save youHow “try-lock” doesn't save you

DeterminismDeterminism

15-410, S'06- 18 -

Try-Lock – Your Hope

AB BA
mutex_lock(&a);

mutex_lock(&b);
mutex_lock(&b);

mutex_is_unlocked(&a)
mutex_unlock(&b);

15-410, S'06- 19 -

Try-Lock – Your Bad Luck

AB BA
mutex_lock(&b);
mutex_is_unlocked(&a)

mutex_lock(&a);
mutex_lock(&a);

mutex_lock(&b);

15-410, S'06- 20 -

Q5 – Deadlock / Race

What went wrong?What went wrong?
� process_ba() checked something and committed to

action
� But process_ab() was still running
� So the “checked-for” condition wasn't true any more

15-410, S'06- 21 -

Q5 – Deadlock / Race

AtomicityAtomicity
� “Is it safe to assume that line BA4 executes atomically

even though it may be composed of multiple
instructions?”

� Certainly not in general!
� But sometimes we must have atomicity (with respect to

interfering sequences)
� When we must have atomicity, we use a synchronization

primitive, such as mutex_lock()
� Then we may assume atomicity—because we built it

15-410, S'06- 22 -

Q5 – Deadlock / Race

DeterminismDeterminism
� What is the final value of workload ?
� Using original process_ba()

� If we didn't deadlock, there must have been 200 increments
� Protected by mutex_b (and mutex_a !)
� That looks deterministic...

� Using replacement process_ba()
� If we didn't deadlock, there have been 100..200 increments

� That's not so deterministic

15-410, S'06- 23 -

Q5 – Deadlock / Race

DeterminismDeterminism
� What is the final value of workload ?
� Using original process_ba()

� If we didn't deadlock, there must have been 200 increments
� Protected by mutex_b (and mutex_a !)
� That looks deterministic...

� Using replacement process_ba()
� If we didn't deadlock, there have been 100..200 increments

� That's not so deterministic
� Say, what was the initial value of workload?

� “int workload”

15-410, S'06- 24 -

Summary

90% = 67.590% = 67.5 8 students 8 students

80% = 60.080% = 60.0 16 students16 students

70% = 52.570% = 52.5 12 students12 students

60% = 45.060% = 45.0 10 students10 students

<60%<60% 4 students 4 students

ComparisonComparison
� This is a typical mix for the mid-term exam

15-410, S'06- 25 -

Implications

Score below 52?Score below 52?
� Figure out what happened
� Probably plan to do better on the final exam

Score below 45?Score below 45?
� Something went very wrong
� Passing the final exam may be a serious challenge
� To pass the class you must demonstrate some

proficiency on exams (project grades alone are not
sufficient)

