
15-410, F'05- 1 -

Exam #1
Oct. 19, 2005

Dave EckhardtDave Eckhardt

L20_Exam1

15-410
“...“I'll be reasonable as soon as I get everything I want”...”

15-410, F'05- 3 -

Synchronization

Checkpoint 2 – Monday, in clusterCheckpoint 2 – Monday, in cluster

� Reminder: context switch ≠ interrupt

� Later other things will invoke it too

15-410, F'05- 4 -

A Word on the Final Exam

DisclaimerDisclaimer

� Past performance is not a guarantee of future results

The course will changeThe course will change

� Up to now: “basics”

� What you need for Project 3

� Coming: advanced topics

� Design issues

� Things you won't experience via implemention

Examination will change to matchExamination will change to match

� More design questions

� Some things you won't have implemented (text useful)

15-410, F'05- 5 -

Outline

Question 1Question 1

Question 2Question 2

Question 3Question 3

Question 4Question 4

15-410, F'05- 6 -

Q1 – kernel_main()

int kernel_main(void) { return(kernel_main()); }

What does it do?What does it do?

� Base: “unrestrained stack growth”

� Key: then what?

GoodGood

� Stomp code, LDT, device regs; no-mem machine-check

Ok, dependingOk, depending

� Segmentation fault

Not as good, can be okNot as good, can be ok

� Page fault

15-410, F'05- 7 -

Q1 – kernel_main()

AvoidAvoid

� “kernel will kill you”

� “scheduler will run somebody else”

� “you will starve other processes of memory

� P1 ⇒ “There...is...no...pilot!” (Laurie Anderson)

� Those things happen for P3 only if you can arrange it...

Also avoidAlso avoid

� It is like an exec(), it is like a fork(), ...

15-410, F'05- 8 -

Q2 – Thread-based “simulation”

void make_object_thread(int id, char *name) {

 obj_desc_t desc = { id, name };

 thr_create(object_thread, (void*)&desc);

}

void *object_thread(void *arg) {

 obj_desc_t *desc = (obj_desc_t *) arg;

 printf(“...”, desc->object_id,

 desc->owner_name);

}

15-410, F'05- 9 -

Q2 – Thread-based “simulation”

Key conceptsKey concepts

� Dangling reference to expired stack frame

� Race condition

Common misconceptionsCommon misconceptions

� “Mistaken” array-size computation
 char *owners[] = { “Mike”, “Rahul” };

 const int n_owners = sizeof (owners) /

 sizeof (owners[0]); /* yep */

� When stack frame is “gone” access will fault

� What do we mean by “gone”?

15-410, F'05- 10 -

Q2 – Thread-based “simulation”

ApproachesApproaches

� Serialize! (Run one thread to finish, then run next)

� Then they're procedure calls, not threads!

� Big global array, tell new thread its index

� Fine for exam question, maybe not great for 106 objects

� Baton-passing

� main loop acquires {semaphore,mutex}

� new thread releases it once bits are copied
 ⇒ synchronization hand-off as part of “every” create not ideal

� creator malloc()/new-thread free()

� You may get some contention on malloc() mutex, but you
can expect it to be less

15-410, F'05- 11 -

Q2 – Thread-based “simulation”

Grading noteGrading note

� Don't “prove too much”

� Many “explanations” of seg fault could “prove” every seg
fault

� Best answers explained both odd output and seg fault

15-410, F'05- 12 -

Q3 – Calvin & Hobbes

“Calvin-o-tron” cookie management system“Calvin-o-tron” cookie management system

Key concepts (clearly mention both)Key concepts (clearly mention both)

� That linked-list code is both right and wrong

� It's called “queue” , but it implements “ stack”

� Stacks are double-plus un-fair

� Can be infinitely unfair – key word: “starvation”

NoteNote

� A large Unix vendor shipped kernel-provided semaphores
based on a stack.

� How could they not notice????

� Well...it always worked ok for them... (how?)

15-410, F'05- 13 -

Q4 – sys_write() / “superbuffers”

Key conceptKey concept

� Not the best plan for success:

� “No matter what” loop around mutex_lock()
» “ I don't want the world...I just want your half” --TMBG

ApproachesApproaches

� Just Serialize!

� Only one thread in superbufferacquire() at once
» Deadlock can always be solved by serialization
» But: bufferacquire() really does take a long time
» Multi-processor PCs are no longer rare
» Generally, your manager won't be impressed

15-410, F'05- 14 -

Q4 – sys_write() / “superbuffers”

ApproachesApproaches

� “As available”

� Lock as many buffers as we can right now, opportunistically

� Problem
» All systems get busy
» Busy time is a bad time to enter inefficient mode
» Some systems are always busy

� Try all-at-once allocation, else yield(-1)

� This is the recipe for ... ?

� “Apply standard avoidance algorithm”

� Pretty costly hammer for this case...something is special

15-410, F'05- 15 -

Q4 – sys_write() / “superbuffers”

ObservationObservation

� Buffer use isn't indefinite / random

� Once you have your 8 you'll proceed to release all

� It'll always be 8 (a known fraction of all the buffers)

PlanPlan

� Split allocation/locking apart from store-back I/O

� Allocate 8 at once

� Use a “who chooses next” queue to provide fairness

� Not a huge number (not hard to fill before you starve)

� Not a huge number (not unfair to others—everybody does 8)

� “Clean” buffers, fill, queue to disk on your own time

15-410, F'05- 16 -

Summary

90% = 67.590% = 67.5 21 students21 students

80% = 60.080% = 60.0 7 students 7 students

70% = 52.570% = 52.5 17 students17 students

60% = 45.060% = 45.0 9 students 9 students

<60%<60% 9 students 9 students

ComparisonComparison

� Usually top two would be flipped, roughly

� “I get it”, and also some grader gentleness

� Bottom three are essentially last fall's #'s

15-410, F'05- 17 -

Implications

Score below 52?Score below 52?

� Figure out what happened

� Probably plan to do better on the final exam

Score below 40?Score below 40?

� Something went very wrong

� Passing the final exam may be a serious challenge

� To pass the class you must demonstrate some proficiency
on exams (project grades alone are not sufficient)

