Project 2: User Level Thread Library
15-410 Operating Systems
February 16, 2007

1 Overview

An important aspect of operating system design is orgagizomputations that run concurrently and share
memory. Concurrency concerns are paramount when desigmitigthreaded programs that share some
critical resource, be it some device or piece of memory. s phoject you will write a thread library and
concurrency primitives. This document provides the baolgd information and specification for writing
the thread library and concurrency primitives.

We will provide you with a miniature operating system ker(eglled “Pebbles”) which implements
a minimal set of system calls, and some multi-threaded progr These programs will be linked
against your thread library, stored on a “RAM disk,” and tlman under the supervision of the Pebbles
kernel. Pebbles is documented by the companion documestipt®s Kernel Specification,” which should
probably be reatiefore this one.

The thread library will be based on thbr ead_f or k system call provided by Pebbles, which provides
a “raw” (unprocessed) interface to kernel-scheduled ttgedour library will provide a basic but usable
interface on top of this elemental thread building block]uiding the ability to join threads.

You will implement mutexes and condition variables basedyouar consideration of the options
provided by the x86 instruction set—including, but not lied to, theXCHG instruction for atomically
exchanging registers and memory or registers and registers

2 Goals

e Becoming familiar with the ways in which operating systeraport user libraries by providing
system calls to create processes, affect scheduling, etc.

e Becoming familiar with programs that involve a high leveboihcurrency and the sharing of critical
resources, including the tools that are used to deal witbetissues.

e Developing skills necessary to produce a substantial atnoiunode, such as organization and
project planning.

e Working with a partner is also an important aspect of thiggmto You will be working with a partner
on subsequent projects, so it is important to be familiahwitheduling time to work, a preferred
working environment, and developing a good group dynamiorbebeginning larger projects.

e Coming to understand the dynamics of source control in agomntext, e.g., when to branch and
merge.

The partner goal is an important one—this project gives yoopgortunity to debug not only your code
deliverables but also your relationship with your parti¥au may find that some of the same techniques

apply.

3 Important Dates

Wednesday, February 7th Project 2 begins

Monday, February 12th You should be able to drawvary detailed picture of the parent and child stacks
duringt hr create() at the point when the child does its fiRtSHL instruction. In your design
multiple pictures may be equally plausible, but it is impoittthat you be able to draw at least one
case in detail.

Wednesday, February 14th You should have thread creation, mutexes, and conditioahlas working
well.

Tuesday, February 20th If you haven’t least begun debuggir@yCLONE and AGILITY _DRIL by this
point, you run the risk of turning in a thread library with ieeis structural flaws and lacking
concurrency debugging experience useful for the kerngépto

Friday, February 23rd Project 2 due at 23:59:59

4 Thread Library API

The library you will write will contain:

Thread management calls

Mutexes and condition variables

Semaphores

Readers/writers locks

Please note that all lock-like objects are defined to be ‘tkdd” when created.

Unlike system call stubs (see “Pebbles Kernel Specificgtidmread library routines need not be one-
per-source-file, but we expect you to use good judgement wh#itioning them (and this may influence
your grade to some extent). You should arrange that the Makefrastructure you are given will build
your library intol i bt hr ead. a (see theREADME file in the tarball).

You may assume that programs which use condition variabikéselude cond. h, programs which
use semaphores will inclugem h, etc.

4.1 Thread Management API

e int thr_init(unsigned int size) - This function is responsible for initializing the thread
library. The argumendi ze specifies the amount of stack space which will be availabiei$e by
threads created withhr _creat e().

This function returns zero on success, and a negative nuombenror.

The thread library can assume that programs using it arebheblhved in the sense that they will
callthr_init(), exactly once, before calling any other thread library fiorc(including memory
allocation functions in theual | oc() family, described below) or invoking ther ead_f or k system
call. Also, you may assume that all threads of a task using ywead library will callt hr _exi t ()

2

instead of directly invoking theani sh() system call (and that the root thread will dattir _exi t ()
instead of et urn() 'ing from mai n()).

e int thr_create(void *(*func)(void *), void *arg) - This function creates a new thread
to runfunc(arg). This function should allocate a stack for the new thread thed invoke the
t hread_f or k system call in an appropriate way. A stack frame should batedefor the child, and
the child should be provided with some way of accessing resith identifier (tid). On success the
thread ID of the new thread is returned, on error a negativebsu is returned.

You should pay attention to (at least) two stack-relatedess First, the stack pointer should
essentially always be aligned on a 32-bit boundary (i.esf4aod 4 == 0). Second, you need
to think very carefully about the relationship of a new tlitda the stack of the parent thread,
especially right after thehr ead_f or k system call has completed.

e int thrjoin(int tid, void **statusp) -

This function “cleans up” after a thread, optionally reiamthe status information provided by the
thread at the time of exit.

The target threadi d may or may not have exited befotrér _j oi n() is called; if it has not, the
calling thread will be suspended until the target threadsdoét.

If statusp is not NULL, the value passed tdir _exit () by the joined thread will be placed in the
location referenced bst at usp.

Only one thread may join on any given target thread. Othengits to join on the same thread
should return an error promptly. If threddd was not created befotenr _j oi n(ti d) was called,
an error will be returned.

This function returns zero on success, and a negative nuombenror.

e void thr_exit(void *status) - This function exits the thread with exit statasatus. If
a thread does not callhr _exit (), the behavior should be the same as if the function did call
thr_exit() and passed in the return value from the thread’s body fumctio

Note thatst at us is not a “pointer to a void”. Instead,st at us is a pointer-sized opaque data
type which the thread library transports uninterpretednftbe caller ot hr _exi t () to the caller of
thr_join().

e int thr_getid(void) - Returns the thread ID of the currently running thread.

eint thr_yield(int tid) - Defers execution of the invoking thread to a later time wofeof
the thread with IDti d. If tidis -1, yield to some unspecified thread. If the thread with I is
not runnable, or doesn'’t exist, then an integer error costetlean zero is returned. Zero is returned
on success.

Note that the “thread IDs” generated and accepted by yoaathlibrary routines (e.gthr _geti d(),
t hr _j oi n()) are not required to be the same “thread IDs” which are géegtiend accepted by the thread-
related system calls (e.d.hread_fork, gettid(), cas_runflag()). If you think about how you would
implement an “M:N” thread library, or a user-space threbddliy, you will see why these two name spaces
cannot always be the same. Whether or not you use kern@eskread ID’s as your thread library’s thread
ID’s is a design decision you will need to consider.

However, youmust not aggressively recycle thread ID’s, as this significantlyues the utility of,
e.g..thr_yield().

4.2 Mutexes

Mutual exclusion locks prevent multiple threads from sitanéously executing critical sections of code.
To implement mutexes you may use ¥@Ginstruction documented on page 3-714 of the Intel Instoucti
Set Reference. For more information on the behavior of nastefeel free to refer to the text, or to the
Solaris or Linuxpt hread_nut ex_i ni t () manual page.

e int nutex_init(nutex_t *nmp) - This function should initialize the mutex pointed to by mp.
The effects of using a mutex before it has been initializedpfanitializing it when it is already
initialized and in use, are undefined (and may be startlifigpis function returns zero on success,
and a negative number on error.

e int nmutex_destroy(mutex_t *np) - This function should “deactivate” the mutex pointed to
by np. The effects of using a mutex from the time of its destructumtil the time of a possible
later re-initialization are undefined. If this function ialled while the mutex is locked, it should
immediately return an error. This function returns zero wccess, and a negative number on error.

e int nutex_l ock(nutex_t *mp) - A call to this function ensures mutual exclusion in the oegi
between itself and a call twit ex_unl ock() . A thread calling this function while another thread is
in an interfering critical section should block until it ibla to claim the lock. This function returns
zero on success, and a negative number on error.

e int nutex_unl ock(nutex_t *np) - Signals the end of aregion of mutual exclusion. The calling
thread gives up its claim to the lock. This function returesozon success, and a negative number
on error.

For the purposes of this assignment, you may assume thatexrsinould be unlocked only by the
thread that most recently lockedtit.

4.3 Condition Variables

Condition variables are used for waiting, for a while, fortexiprotected state to be modified by some
other thread. A condition variable allows a thread to vaduiht relinquish the CPU so that other threads
may make changes to the shared state, and then tell the gvtlitiéad that they have done so. If there
is some shared resource, threads may de-schedule themartide awakened by whichever thread was
using that resource when that thread is finished with it. Iplémenting condition variables, you may use
your mutexes, and theas_runfl ag() system call. For more information on the behaviour of caoadit
variables, please refer to the Solaris or Linux documettatinpt hr ead_cond_wai t ().

e int cond.init(cond_.t *cv) - This function should initialize the condition variableipted to
by cv. The effects of using a condition variable before it has hie@ralized, or of initializing it
when it is already initialized and in use, are undefined. Timgtion returns zero on success and a
number less than zero on error.

e int cond_destroy(cond_t *cv) - This function should “deactivate” the condition variable
pointed to bycv. The effects of using a condition variable from the time sfdestruction until the
time of a possible later re-initialization are undefinectdfid_dest r oy() is called while threads are

1opinions differ, but you might want to wait until after the 4vs” lecture before forming yours.

4

still blocked waiting on the condition variable, then thadtion should return an error immediately.
This function returns zero on success and a number less énaroam error.

e int cond.wait(cond_t *cv, mutex_t *np) - The condition wait function allows a thread to
wait for a condition and release the associated mutex timegeitls to hold to check that condition.
The calling thread blocks, waiting to be signaled. The bdockhread may be awakened by a
cond_si gnal () or acond_broadcast (). This function returns zero on success, and a negative
number on error. In the case of a successful return frond_wai t (), *np has been re-acquired on
behalf of the calling thread.

e int condssignal (cond_.t *cv) - This function should wake up a thread waiting on the
condition variable pointed to byv, if one exists. This function returns zero on success, and a
negative number on error. Note that “no threads waitingicisan error condition.

e int cond_broadcast(cond_t *cv) - This function should wake up all threads waiting on the
condition variable pointed to bgv. This function returns zero on success, and a negative numbe
on error.

Note thatcond_br oadcast () shouldnot awaken threads which may invokend wai t (cv) “after”
this call tocond_br oadcast () has begun execution.

4.4 Semaphores

As discussed in class, semaphores are a higher-level gongfran mutexes and condition variables.
Implementing semaphores on top of mutexes and conditioiablas should be a straightforward but
hopefully illuminating experience.

e int seminit(semt *sem int count) - This function should initialize the semaphore
pointed to bysemto the valuecount . Effects of using a semaphore before it has been initialized
may be undefined. This function returns zero on success anchbar less than zero on error.

e int semdestroy(semt *sem) - Thisfunction should “deactivate” the semaphore pointetit
sem Effects of using a semaphore after it has been destroyecomaypdefined. I§emdest roy()
is called while threads are still blocked waiting on the sphaaie, then the function should return
an error immediately. This function returns zero on suce@sksa number less than zero on error.

e int semwait(semt *sem) - The semaphore wait function allows a thread to decrement a
semaphore value, and may cause it to block indefinitely itnisllegal to perform the decrement.
This function returns zero on success, and a negative nuombenror.

e int semsignal (semt *sem) - This function should wake up a thread waiting on the
semaphore pointed to gem if one exists, and should update the semaphore value tegsrd
This function returns zero on success, and a negative nuombenror.

45 Readers/writers locks

Readers/writers locks allow multiple threads to have “femmtess to some object simultaneously. They
enforce the requirement that if any thread has “write” asd¢esn object, no other thread may have either

2|f that sounds a little fuzzy to you, you're right—but if yohik about it a bit longer it should make sense.

kind (“read” or “write”) of access to the object at the sanmedi These types of locking behaviors are often
called “shared” (for readers) and “exclusive” (for writglacks. Refer to Section 7.5.2 of the textbook for
details.

The generic version of this problem is called the “readetig#vs problem”. Two standard formulations
of the readers/writers problem exist, called unimagirdyivthe “first” and “second” readers/writers
problems. In the “first” readers/writers problem, no readdt be forced to wait unless a writer has
already obtained an exclusive lock. In the ‘second’ reddeiters problem, no new reader can acquire
a shared lock if a writer is waiting. You should think throutiie reasons that these formulations allow
starvation of different access types; starvation of wsiiarthe case of the “first” readers/writers problem
and starvation of readers in the case of the “second” readéess problem.

In addition to a correct implementation of shared and exaulecking, we expect you to implement
a solution that is “at least of good as” a solution to the “setfaeaders/writers problem. That is, your
solution should not allow starvation of writers. Your saut need not strictly follow either of the above
formulations: it is possible to build a solution which does starve any client. No matter what you choose
to implement, you should explain what, how, and why.

You may choose which underlying primitives (e.g., muteafcor semaphore) you use to implement
readers/writers locks. Once again, you should explaingbeaning behind your choice.

e int rwock_init(rwockt *rw ock) - This function should initialize the lock pointed to by
rw ock. Effects of using a lock before it has been initialized mayubeefined. This function
returns zero on success and a number less than zero on error.

e int rw ock_destroy(rw ock_t *rw ock) - This function should “deactivate” the lock pointed
to by rw ock. Effects of using a lock after it has been destroyed may becfimet. If
rwl ock_destroy() is called while the lock is held by any number of threads orlevthireads are
still blocked waiting on the lock, then the function shouddiurn an error immediately. This function
returns zero on success and a number less than zero on error.

e int rwock_lock(rwock_t *rwock, int type) - Thetype parameter is required to be
either RALOCK_READ (for a shared lock) oRALOCK_WRI TE (for an exclusive lock). This function
blocks the calling thread until it has been granted the regaeform of access. This function returns
Zero on success, and a negative number on error.

e int rw ock_unlock(rw ock_t *rw ock) - This function indicates that the calling thread is
done using the locked state in whichever mode it was grartedsa for. Whether a call to this
function does or does not result in a thread being awakenpendis on the policy you chose to
implement. This function returns zero on success, and aimegaimber on error.

Note: Wewill not grade your readers/writers implementation unless your threbrhty passes a
specified series of tests; see Sectlén

4.6 Safety & Concurrency

Please keep in mind that much of the code for this projectseete thread safe. In particular the thread
library itself should be thread safe. However, by its nattéread library must also be concurrent. In
other words, you mayot solve the thread-safety problem with a hammer, such as asgigbal lock to
ensure that only one thread at a time can be running threahlibode. In general, it should be possible
for many threads to be running each library interface famctat the same time.”

6

4.7 Distribution Files

The tarball for this project has been posted on the courseageh Please read the README included
with the tarball.

5 Documentation

For each project in 15-410, functions and structures shioelldocumented using doxygen. Doxygen uses
syntax similar to Javadoc. The Doxygen documentation cdauel on the course website. The provided
Makefile has a target calldd ml _doc that will invoke doxygen on the source files listed in the Mike

6 Thread Group Library

A commonly used program paradigm involves one or more marthgeads overseeing the completion of
a large task which has been split into parts assigned to agbeobrker threads. Examples of this model
include databases, Apache, and Firefox. Once a workerdhras completed its job, it exits; manager
threads dispatch new worker threads based on system loadreggiests, and the results obtained by
previous worker threads. In this environment it is not comert for a manager to know which particular
worker thread it should next cdlhr _j oi n() on; instead it is convenient to wait until the next thread in
the worker pool completes.

We have provided you with a simple library implementing &had groups.” This library essentially
provides an abstraction layer above the thread library ydlwite—a compliant program will use
thrgrp_create() andthrgrp_j oi n() instead of calling hr _create() andthr_j oi n() directly.

These functions and their requisite data structures areetkfin 410user/lib/thrgrp/thrgrp.c and
410user/lib/inc/thrgrp.h.

e thrgrp_group_t:
A structure representing a thread group.

e thrgrp_init_group(thrgrp_group_t *tg):
This function initializes a thread group. It must be callezfdoe the thread group is used for
anything. Returns 0 on success, non-zero otherwise.

e thrgrp_destroy_group(thrgrp_group_t *tg):
This function destroys a thread group, cleaning up all ofritsmory. This should be called if a
threadgroup isn't to be used anymore. Returns 0 on sucoassaro otherwise.

e thrgrp_create(thrgrp_groupt *tg, void *(*func)(void *), void *arg):
This function spawns a new thread (analogous lio_create()) in the threadgrougg. The
spawned thread must not calir _exit(). Instead,func() should return an exit code (of type
voi d *) which will be made available to a manager thread.

Returns 0 on success, non-zero otherwise.

e thrgrp_join(thrgrp_groupt *tg, void **statusp):
If there are any unreaped threads in the thread gtaughen it will reap one of them, setting
*st at usp appropriately, and return. If there are no unreaped thraadise group, it will block
until one does exit, reap it, and return.

7 The C Library

This is simply a list of the most common library functionstthae provided. For details on using these
functions please see the approprict@ pages.

Other functions are provided that are not listed here. Bleae the appropriate header files for a full
listing of the provided functions.

Some functions typically found in a C I/O library are prowidey 410user/|ib/1ibstdio.a. The
header file for these functions440user/|i b/ i nc/ stdi o. h, aka#i ncl ude<st di 0. h>.

e int putchar(int c)

e int puts(const char *str)

e int printf(const char *format, ...)

e int sprintf(char *dest, const char *format, ...)

e int snprintf(char *dest, int size, const char *formant, ...)
e int sscanf(const char *str, const char *format, ...)

e void lprintf(const char *format, ...)

Note thatl printf() isthe user-space analog of ther i nt f _kern() you used in Project 1.

Some functions typically found in various places in a stadd& library are provided by
410user/lib/libstdlib.a. The header files for these functions,ditOuser/|i b/inc, arestdl i b. h,
assert. h, andct ype. h.

e int atoi(const char *str)

| ong atol (const char *str)

long strtol (const char *in, const char **out, int base)

unsi gned long strtoul (const char *in, const char **out, int base)

voi d panic(const char *format, ...)

voi d assert(int expression)

We are providing you witmon-thread-safe versions of the standard C library memory allocation
routines. You areequired to provide a thread-safe wrapper routine with the apprégname (remove the
underscore character) for each provided routine. Thesddhe genuine wrappers, i.e., dot copy and
modify the source code for the provided routines.

e void *_mal |l oc(size_t size)
e void *_calloc(size_t nelt, size_t eltsize)
e void *_realloc(void *buf, size_t newsize)

e void _free(void *buf)

You may assume that no calls to functions in the “malloc() ifghwill be made before the call to
throinit().

These functions will typically seek to allocate memory cewi from the kernel which start at the top
of the data segment and proceed to grow upward. You will treegirio plan your use of the available
address space with some care.

Some functions typically found in a C string library are gomd by410user/lib/libstring. a.
The header file for these functionsdisOuser /i b/inc/string. h.

e int strlen(const char *s)

e char *strcpy(char *dest, char *src)

e char *strncpy(char *dest, char *src, int n)

e char *strdup(const char *s)

e char *strcat(char *dest, const char *src)

e char *strncat(char *dest, const char *src, int n)

e int strcnp(const char *a, const char *D)

e int strncnp(const char *a, const char *b, int n)

e void *nemmove(void *to, const void *from unsigned int n)
e void *nenset (void *to, int ch, unsigned int n)

e void *nenctpy(void *to, const void *from unsigned int n)

8 Debugging Support Code

The sameévVAG C_BREAK macro which you used in Project 1 is also available to usee é¢odProject 2 if
you#i ncl ude theuser/inc/ magi c_br eak. h header file.

The function calll printf() may be used to output debugging messages from user progiéns.
prototype is ir410user /i b/inc/stdio. h.

Also, user code can be symbolically debuged using the Sisyin®olic debugger.f you restrict
yourself to debugging with printf() it may cost you significant amounts of time.

9 Deliverables

Implement the functions for the thread library, and conenicly tools conforming to the documented APIs.
Hand in all source files that you generate. Make sure to peomidesign description in README.dox,
including an overview of existing issues and any intergstiasign decisions you made.

10 Grading Criteria

You will be graded on the completeness and correctness ofproject. A complete project is composed
of a reasonable attempt at each function in the API. Also,maptete project follows the prescribed build
process, and is well documented. A correct project imples#re provided specification. Also, code
using the API provided by a correct project will not be killbgl the kernel, and will not suffer from
inconsistencies due to concurrency errors in the libratgase note that there exist concurrency errors
that even carefully-written test cases may not expose. BReddhink through your code carefully. Do not
forget to consider pathological cases.

The most important parts of the assignment to complete ardhitead management, mutex, and
condition variable calls. These should be well-designetidly implemented, and thoroughly tested with
m sbehave() (see below). It is probably unwise to devote substantialngpdffort to the other parts of
the library before the core is reliable. In particular, widl not grade readers/writers implementations for
Project 2 submissions which do not pass the “hurdle” subfsieaest suite (see the project web page for
details).

11 Debugging

11.1 Requests for Help

Please do not ask for help from the course staff with a med#agthis:
The kernel is killing my threads! Why?
or
Why is my program stuck imal | oc() ?

An important part of this class is developing your debuggkig)s. In other words, when you complete
this class you should be able to debug problems which youqarsly would not have been able to handle.

Thus, when faced with a problem, you need to invest some tinfiguring out a way to characterize
it and close in on it so you can observe it in the actual act efrdetion. Your reflex when running into a
strange new problem should be to start thinking, not to statiy asking for help.

Having said that, if a reasonable amount of time has beent $p@mng to solve a problem and no
progress has been made, do not hesitate to ask a questiopleBsg¢ be prepared with a list of details and
an explanation of what you have tried and ruled out so far.

11.2 Debugging Strategy

In general, when confronted by a mysterious problem, youlshizegin with a “story” of what yowxpect
to be happening and measure the system you're debugging totssre its behavior diverges from your
expectations.

To do this your story must be fairly detailed. For examplej gbould have a fairly good mental model
of the assembly code generated from a given line of C codendlierstand why “a variable has the wrong
value” you need to know how the variable is initialized, wdés value is stored at various times, and how

10

it moves from one location to another. If you're confusedwdhibis, it is probably good for you to spend
some time withgcc - S.

Once your “story” is fleshed out, you will need to measure ysesn at increasing levels of detalil
to determine the point of divergence. You will find yoursgdeading some time thinking about how to
pin your code down to observe whether or not a particular efiabior is happening. You may need to
write some code to periodically test data-structure comscy, artificially cause a library routine to fail to
observe how your main code responds, log actions taken bycgole and write a log-analyzer perl script,
etc.

Please note that the user-space memory allocator we prowid®ith is very similar to the allocator
written by 15-213 students in the sense that errors repbstéidle allocator, or program crashes which take
place inside the allocator, are likely to mean that the usome memory overflowed it and corrupted the
allocator's meta-data. In the other direction, complabysimm” are coming from the kernel's memory
allocator, and probably indicate kernel bugs (see below).

11.3 Reference Kernel Panics and Crashes

If the Pebbles kernel tells you something went horribly vgr@nd drops you into the debugger, don't
panic. It probably won't happen to most of you, but we areyfallvare that we haven't nailed the last bug
yet...

It's probably a good idea for you to tar up your working dimgt and make a brief note of what
you were doing when the kernel ran into trouble. For examplet sequence of test programs had you
run since boot? If you have a short repeatable way of gettingkérnel to die that’s excellent, and we’d
appreciate a snapshot that lets us reproduce it, even ifheudo on to modify your code to make the
crash go away.

To send us a snapshot, tar it up somewhere in your group'schalaectory,
tar cfz .../ mygroup/scratch/kcrash. sonenane.tgz .

create a brief summary of how to reproduce it,
$EDI TOR .../ nygroup/ scratch/ kcrash. somename. READVE

and send a brief note to the staff mailing list. While suchaméwill of course attract our attention,
it's not likely that we can provide a fix in a small number of mies...you may need to try to guess what
went wrong and work around it temporarily, or work on somesothart of your project for a while.

12 Strategy

12.1 Suggestions

First, this may be the first time you have written code witls trariety and density of concurrency hazards.
If so, you will probably find this code much harder to debugnticade you've written before, i.e., you
should allocate more debugging time than usual. Of counsssilver lining in this cloud is that experience
debugging concurrent code will probably be useful to yoarafou leave this class.

Secondgseveral of the thread library functions arauch harder then they first appear. It is fairly likely
that you will write half the code for a thread library funati®efore realizing that you've never written

11

“that kind of code” before. When this happens the best cooirsetion is probably to come to a complete
stop, think your way through the problem, and then explaéngioblem and your proposed solution to
your partner. It may also happen that as you write your fiftiction you realize your second must be
scrapped and re-written.

Third, the Pebbles kernel offers a feature intended to helpigcrease the solidity of your code. A
special system call,oi d m sbehave(int node), alters the behavior of the kernel in ways which may
expose unwarranted assumptions or concurrency bugs inlipoary code. Values fonode range from
zero (the default behavior) to thirty-one, or you may seldcfor behavior which may be particularly
challenging. As you experiment witlh sbehave(), you may become able to predict or describe the
behavior of a particulamode. Each group must keep confidential its own understandinbeofiteanings
of particularnode values.

Fourth, we recommenedgainst splitting the assignment into two parts, working sepayatsitil the
penultimate day, and then meeting to “put the pieces togethiestead, we recommend the opposite,
namely that you make it a habit to readd talk about each other's code every few day¥ou may
encounter an exam question related to code your partner wra.

Fifth, we have observed that a particularly bad divisionadifdr is for one person to write system call
stubs, linked lists, queues, and maybe semaphores, waitgller person writes everything else. This puts
the first person at risk of doing poorly on exams.

Sixth, instead of typing linked-list traversal code 100dsrthroughout your library, thus firmly and
eternally committing yourselves to a linear-time datactite, give some consideration to encapsulation.

Seventh, we strongly recommend that you use a source-tggsiem to manage the evolution and/or
devolution of your code. While the complexity of this prdj&mes not outright necessitate the use of
source control, this is a good opportunity for you to get usdtland set up a work flow with your partner.

Eighth, don't forget to do an update when make starts beegingu. If you're in the middle of
debugging a problem, you probably don’t want to switch kisnleut you generallylo want to upgrade
when we issue new things, because we do so to help. A partictlad thing to do is to work on your
thread library for two weeks using the very oldest kernel #@meh 15 minutes before the assignment
deadline switch to the very newest one and find that one tinsetiousand you catiew_pages() in an
improper way which got through before and doesn’'t any moeed@'t do that. The update process gives
you the power to decide when to import changes, but that mbangsponsibility lies with you as well.

Ninth, when you are doing design, ask yourself what thingsryhread library can accomplish in
parallel. Also, if you ever find yourself confused by exadtllgat “before” means, consider what it might
mean on a multi-processor machine.

12.2 Steps

1. Read the handout.

2. Right away write system call wrappers for one or two system calls andarsmall test program
using those system calls. This is probably the best way tagagourself in the project and to get
an initial grasp of its scope. Good system calls to begin aithset _st at us() andvani sh(),
since the C run-time start-up code invokes ¢ket () library routine, which depends on them. A
good second step would pei nt ().

3. Write the remaining system call wrappers (with the exoepbft hr ead_f or k).

12

4. Design and make a draft version of mutexes and conditioahbias. In order to do that, you will
probably need to perform a hazard analysis of which codeesems in your thread library would
suffer if the scheduler switched from executing one of ybweads to another.

5. What can you test at this point? Be creative.

6. Think hard about stacks. What should the child’s stack ld® before and after &hr ead_f or k?
In fact, it is probably a good idea for you to draw every detdithe parent’s stack and the child’s
stack before and aftehr ead_f or k.

7. Write and testhr_init () andthr _create().
8. Writet hr _exi t (). Don’t worry about reporting exit status, yet—it's trickp@ugh without that!
9. Test mutexes and condition variables.

10. Try all them sbhehave() flavors.

11. Write and testhr _join().

12. Worry about reporting the exit status.

13. This might be a good point to relax and have fun writing &ghores.

14. Test. Debug. Test. Debug. Test. Sleep once in a while.

15. Try all them sbhehave() flavors (again). Note that most of the tests provided to yothleycourse
staff (see410user/ progs/ README) are really multiple tests if you think about it... you prbba
shouldn’t declare a test “passed” urdil versions pass.

16. Design, implement, and test readers/writers locks.

17. Celebrate! You have created a robust and useful keupglested user level thread library.

12.3 Questions & Challenges

Below we briefly discuss common questions about this assghieind issue several optional challenges.
It is very important that your implementation be solid, amdiyhould not be diverted from this primary
goal by attempting to solve these challenges. However, e@maviding this challenge list as a way for
interested students to deepen their understanding anpeshtreir design skills.

12.3.1 Questions

From time to time we are asked how many threads must be segpbyt a library implementation. In
general the answer is that the thread library should not bitirlg factor—it should be possible to use all
available memory for threads, and of course it could happenday that Pebbles would run on a machine
with more memory. In the other direction, if you feel you mirapose a static limit on the number of
threads (or some other run-time feature), you should dontigwir reasoning and we will attempt to take
it into account.

Sometimes we are asked to state a simple requirement abaodéd waiting (e.g., “Are we required
to implement the bounded waiting algorithm presented ingbtire slides?”). Since this is a design class,

13

you should give serious consideration to the issue of balimdeting and the interplay between bounded
waiting and the system environment you will be using. Then sloould be in a position to evaluate the
necessity of ensuring or approximating bounded waitingreovdyou might go about doing that. Whatever
you choose to do should sensibly balance cost againsyufiidur project documentation should briefly
but convincingly explain your reasoning.

It has been pointed out to us that, if a thread is killed by then&l as a result of some improper
behavior, your thread library has no way to find out about &imid take remedial action. This is true, and
thus the thread library cannot be held responsible for gmasbehavior on the part of threads it hosts. In
fact, you can probably think of other sorts of errant behawibich your library can’'t reasonably protect
against.

12.3.2 Challenge: efficient hr _geti d()
There is an easy way to implemeritr _geti d(), but it is woefully inefficient. Can you do better? We
have given you a serious hint.

12.3.3 Challenget hr_Zinit()

Is it really necessary thathr_init () be called beforaml | oc()? How might you buildmal | oc()

to make that unnecessary? Is it really necessary to recueredot thread of a task to explicitly call
thr_exit()? Isthere awayhr_init() can arrange for that call to happen automatically? Hint:atlot
approaches which appear to be solutions to this challerntgalbcare.

12.3.4 Challenge: “reaper thread”

If you feel you need a “reaper thread,” consider whether@ly necessary.

12.3.5 Challenge: memory-efficient hr _exi t ()

Since there is no bound on how much time can pass betweerea xging and its “parent” or “manager”
thread calling hr _j oi n(), it is undesirable for a “zombie thread” to hold onto largecaimts of memory.
Can you avoid this situation? There are multiple approgoligk different tradeoffs.

14

	Overview
	Goals
	Important Dates
	Thread Library API
	Thread Management API
	Mutexes
	Condition Variables
	Semaphores
	Readers/writers locks
	Safety & Concurrency
	Distribution Files

	Documentation
	Thread Group Library
	The C Library
	 Debugging Support Code
	 Deliverables
	 Grading Criteria
	Debugging
	Requests for Help
	Debugging Strategy
	Reference Kernel Panics and Crashes

	 Strategy
	 Suggestions
	 Steps
	 Questions & Challenges
	Questions
	Challenge: efficient thr_getid()
	Challenge: thr_init()
	Challenge: ``reaper thread''
	Challenge: memory-efficient thr_exit()

