15-410, Operating System Design & Implementation

Pebbles Kernel Specification
February 16, 2007

Contents

1 Introduction
1.1 OVEIVIEW o o e

2 User Execution Environment

3 The System Call Interface
3.1 Invocationand Return.
3.2 Semantics of System Call Interface
3.3 SystemCall StubLibrary

4 System Call Specifications
4.1 OVEIVIEW o e e e
42 Task&ThreadIDs. e
4.3 Per-thread “runflag”.
4.4 LifeCycle. e
4.5 Thread Management
4.6 Memory Management.
4.7 Consolel/O. e
4.8 Miscellaneous System Interaction.

1 Introduction

This document defines the correct behavior of kernels foSgireng 2007 edition of 15-410. The
goal of this document is to supply information about behiarather than implementation details.
In Project 2 you will be given a kernel binary exhibiting tedsehaviors upon which to build your
thread library; later, in Project 3, you will construct a kkekFwhich behaves this way.

1.1 Overview

The 410 kernel environment supports multiple address spaaehardware paging, preemptive
multitasking, and a small set of important system calls.oAthe kernel supplies device drivers
for the keyboard, the console, and the interval timer.

2 User Execution Environment

The “Pebbles” kernel supports multiple independessks each of which serves as a protection
domain. A task’s resources include various memory regias “@visible” kernel resources
(such as a queue of task-exit notifications). Some versibiiedernel support file 1/0, in which
case file descriptors are task resources as well.

Execution proceeds by the kernel schedulitgeads Each thread represents an
independently-schedulable register set; all memory eefss and all system calls issued by
a thread represent accesses to resources defined and owttesl thyead’s enclosing task. A
task may contain multiple threads, in which case all haveakguacess to all task resources.
A carefully designed set of cooperating library routines taverage this feature to provide a
simplified version of POSIX “pthreads.”

Multiprocessor versions of the kernel may simultaneousty multiple threads of a single
task, one thread for each of several tasks, or a mixture.

When a task begins execution of a new program, the operatsigra builds several memory
regions from the executable file and command line arguments:

e Aread-only code region containing machine instructions
e An optional read-only-constant data region
o A read/write data region containing some variables.

e A single automatic stack region containing a mixture ofahlés and procedure call return
information. The stack begins at some “large” address anchang accesses typically
cause the kernel to add new pages, growing the region dowlrtexard the top of the data
region. Of course, if they collide, disaster will result.

In addition, the task may add memory regions as specifiedrbetd memory added to a
task’s address space after it begins running is zeroedéafor thread of the task can access it.

Pebbles allows one task to create another though the use béith() andexec() system
calls, which you will not need for Project 2 (the shell pragravhich we provide so you can
launch your test programs does use them).

3 The System Call Interface

3.1 Invocation and Return

User code will make requests of the kernel by issuing a so#iwaterrupt using the NT
instruction. Interrupt numbers are definedtirtOuser /| i b/inc/syscal | int.h.

To invoke a system call, the following protocol is followedf. the system call takes one
32-bit parameter, it is placed in tRési register. Then the appropriate interrupt, as defined
in syscal | _nums. h, is raised via thé NT x instruction (each system call has been assigned its
own | NT instruction, hence its own value Bj. If the system call expects more than one 32-bit
parameter, you should construct in memory a “system cakgtacontaining the parameters and
place theaddres=of the packet ifesi .

From a theoretical perspective, theadl i ne() system call’s “system call packet” could be
described by the following C structure:

struct read line_parns {
int len;
char *buf;

}orip;

After filling in the packet, you would arrange for its addréssthis notation&r | p) to be
placed in%esi . When the system call completes, the return value, if anypb&iavailable in the
Y%eax register.

Observe that notation and implementation are not alwaysahee; it might be wise to consult
a C language reference to make sure you really understana I@str uct uses memory.

3.2 Semantics of System Call Interface

The 410 kernel verifies that every byte of every system cgliment lies in a memory region
which the invoking thread’s task has appropriate permisticaccess. System calls will return
an integer error code less than zero if any part of any argumenvalid. The kernetloes not
kill a user thread that invokes a system call with a bad arguiméo action taken by user code
shouldevercause the kernel to crash, hang, or otherwise fail to perftsrjob.

3.3 System Call Stub Library

While the kernel provides system calls for your use, it doespmovide a “C library” which
accesses those calls. Before your programs can get thd kenh@ anything for them, you will
need to implement an assembly code “stub” for each systdm cal

3

Stub routinesnustbe one per file and you should arrange for the Makefile infuasire you
are given to build them intbi bsyscal | . a (see theREADVE file in the tarball). While system
call stubs resemble the trap handler wrappers you wroterfgeé&t 1, they are different in one
critical way. Since your kernel must always be ready to raedptm any interrupt or trap, it
can potentially use every wrapper during each executiothadlrmust be linked (once) into the
kernel executable. However, the average user programra@s/oke every system call during
the course of its execution. In fact, many user programsatomnly a trivial amount of code.
If you create one huge system call stub file containing the ¢odnvoke every system call, the
linker will happily append the huge .o file &veryuser-level program you build and your “RAM
disk” file system will overflow, probably when we are tryingdoade your project. So don’t do
that.

While the project tarball contains a singigscal | . c, full of blank system call stubs, this
is only a convenience so that you can link test programs befou have completed all your
stubs—as you write each stub, this file should get smalléreugntually being deleted.

When building your stub library, yomust match the declarations we have provided in
410user/liblinc/syscall.hineverydetail. Otherwise, our test programs will not ligaanst
your stub library. If you think there is a problem with a deeal#gon we have given you, explain
your thinking to us—don't just “fix” the declaration. Any sgsn-call entry code which doesn’t
map straightforwardly from a declarationsgscal | . h into code isn't a “genuine” stub routine
and shouldn't be part dfi bsyscal | . a—code specific to some application or facility should be
in the appropriate place in the directory tree.

Please remember your x86 calling convention rules. If yodifg@any callee-saved registers
inside your stub routines, you must restore their valuegreetturning to your caller. The kernel,
of course, always preserves the values of all user-modifiedgisters except when it explicity
modifies them according to the system call specifications.

4 System Call Specifications

4.1 Overview
The system calls provided by the 410 kernel can be brokerfir@@roups, namely
e Life Cycle
e Thread Management
¢ Memory Management
e Console I/0

e Miscellaneous System Interaction

The following descriptions of system calls use C functiooldetion syntax even though the
actual system call interface, as described in Se@®jas defined in terms of assembly-language

4

primitives. This means that student teams must write a systl stub library, as described in
Section3.3, in order to invoke any system calls. This stub library is kvdeable.

Unless otherwise noted, system calls return zero on suecekan error code less than zero
if something goes wrong.

One system call; hr ead_f or k, is presented without a C-style declaration. This is bezaus
the actions performed byhread_f ork are outside of the scope of, and manipulate, the C
language runtime environment. You will need to determineyfourself the correct manner
and context for invoking hr ead_f ork. It is not an oversight that hr ead f ork is “missing”
fromsyscal | . h, and you must not “fix” this oversight. If you feel a need toldee a C function
calledt hread_f or k() , think carefully about whether that is really the best naandie function,
what parameters it should take, who needs to “see” the aeidar etc.

4.2 Task & Thread IDs

Task and thread identification numbers are monotonicadlemsing throughout the execution of
the kernel. In other words, once there is a thread #35, théfeat be another thread #35 until
an intervening four billion threads have been created.

4.3 Per-thread “run flag”

The kernel provides a facility for a thread to suspend itxaten and for that execution to later
be resumed by another thread. Notionally, the kernel agtscwith each thread a “running flag,”
defined as a 32-bit word with the following semantics:

e A thread which has not yet been created, or which is “suffityeshead,” has no run flag,
so operations on the run flag will return an error,

e When created, a thread’s run flag begins with the value 0,
e Setting a thread'’s run flag to a negative value will immedyedeispend its execution,

e If a thread’s run flag is negative, setting it to a non-negatalue will end suspension of
the thread’s execution.

Logically one mightimagine that each time a schedulinggleniis made the kernel examines
the run-flag value of each thread which is not blocked in aesystall and runs the “next one”
whose flag is non-negative. Modifying any thread'’s run flagjdally invokes the scheduler (but
doesn’t necessarily cause a thread switch). This logieal\does not necessarily describe the
structure of any particular kernel implementation.

4.4 Life Cycle

This group contains system calls which manage the creatidrnlastruction of tasks and threads.

e int fork(void) - Creates a new task. The new task receives an exact, coloepnof
all memory regions of the invoking task. The new task corstaisingle thread which is a
copy of the thread invokinfyor k() except for the return value of the system calf.df k()
succeeds, the invoking thread will receive the ID of the nask's thread and the newly
created thread will receive the value zero. The exit stagae pelow) of a newly-created
task is 0.

Errors are reported via a negative return value, in whicle casnew task has been created.

Some kernel implementations reject calld tw k() which take place while the invoking
task contains more than one thread.

e thread._fork - Creates a new thread in the current task (i.e., the newdhwsddhashare all
task resources as described in Sec#prThe value ofesi is ignored, i.e., the system call
has no parameters.

The invoking thread’s return value %ax is the thread ID of the newly-created thread; the
new thread’s return value is zero. All other registers inrtbe thread will be initialized to
the same values as the corresponding registers in the eadhr

Errors are reported via a negative return value, in whicle gas new thread has been
created.

Some kernel versions reject callsftar k() orexec() which take place while the invoking
task contains more than one thread.

e int exec(char *execname, char **argvec) - Replaces the program currently
running in the invoking task with the program stored in the ilamedexecnanme. The
argumenar gvec points to a null-terminated vector of null-terminatedrsgrarguments.

The number of strings in the vector and the vector itself gltransported into the memory
of the new task where they will serve as the first and seconanaggts of the the new
program’snai n(), respectively. It is conventional that gvec[0] is the same string as
execnane andar gvec|[1] is the first command line parameter, etc. Some programs will
behave oddly if this convention is not followed.

Reasonable limits may be placed on the number of argumeatta tiser program may pass
toexec(), and the length of each argument.

The kernel does as much validation as possible otkee () request before deallocating
the old program’s resources.

On success, this system call does not return to the invokiogram, since it is no longer
running. If something goes wrong, an integer error codetless zero will be returned.

Some kernel versions reject calls égec() which take place while the invoking task
contains more than one thread.

e voi d set status(int status) - Sets the exit status of the current taskstat us.

e voi d vani sh(voi d) - Terminates execution of the calling thread “immediately.the
invoking thread is the last thread in its task, the kernelldeates all resources in use by

6

4.5

the task and makes the exit status of the task available tpatent task (the task which
created this task usirfgr k()) viawai t () . If the parent task is no longer running, the exit
status of the task is made available to the kernel-launcimd task instead.

If the kernel decides to kill a thread, the effect should b&odews:

— The kernel should display an appropriate message on theleons

— If the thread is the sole thread in its task, the kernel sholaldhe equivalent of
set status(-2),

— The kernel should perform the equivalentahi sh() on behalf of the thread.

Thevani sh() of one thread, voluntary or involuntary, does not cause #naeéd to destroy
other threads in the same task.

int wait(int *status_ptr) -
Collects the exit status of a task and stores it in the integferenced bgt at us_ptr.

If no error occurs, the return value ohi t () is the thread ID of thdirst thread of the
exiting task,not the thread ID of the last thread in that tasketa t () . This should make
sense if you consider hoior k() andwai t () interact.

Thewai t () system call may be invoked simultaneously by any number iafatis in a
task; exit statuses may be matcheawot () 'ing threads in any non-pathological way. If
one or more threads invokai t () while there are child tasks which have not yet exited,
they will block until one exits.

Whenever a task has no un-exited child tasks, any pendingwrcalls towai t () will
return an integer error code less than zero.

voi d task_vanish(int status) - Causes all threads of a taskuani sh(). The exit
status of the task, as returned v t () , will be the value of thet at us parameter.

The threads mustani sh() “in a timely fashion,” meaning that it isiot ok for
t ask_vani sh() to “wait around” for threads to complete very-long-runnorginbounded-
time operations.

Thread Management
int gettid() - Returns the thread ID of the invoking thread.

int yield(int tid) - Defers execution of the invoking thread to a time determhine
by the scheduler, in favor of the thread with tDd. If tid is -1, the scheduler may
determine which thread to run next. The only threads whasedsding should be affected
by yi el d() are the calling thread and the thread thatiisl d() ed to. If the thread with
ID tid does not exist, is awaiting an external event in a systensoal as readline() or
wait(), or has been suspended via a system call, then areimgegr code less than zero is
returned. Zero is returned on success.

e int casrunflag(int tid, int *oldp, int *expectp, int *newp) - Performs an

4.6

4.7

atomic “Compare And Swap” operation on the run flag of threladt The thread’s run-
flag value is copied to the word addresseabgp; if the thread’s run-flag value is equal to
the value pointed to bgxpect p, the run-flag value is set to the value pointed tanbwp.
Changes to the run-flag value affect scheduling as descirb®ection4.3.

An integer error code less than zero is returned if any of thietpr parameters is invalid.
In addition, it is an error for a thread to attempt to suspéeceixecution of any thread other
than itself.

This system call imtomicwith respect to other invocations of itself and to modifiocat
of *newp and*expect p by threads running in user mode.

The effects ofcas_runflag() are “immediate” in the sense that a thread which is
suspended stops running, and a thread which is allowed tpatemtially begins running,
before the system call completes.

unsi gned int get_ticks(void) - Returns the number of timer ticks which have
occurred since system boot.

int sleep(int ticks) - Deschedules the calling thread until at leastks timer
interrupts have occurred after the call. Returns immeljiatet i cks is zero. Returns
an integer error code less than zerbiitks is negative. Returns zero otherwise.

Memory Management

int new.pages(void *base, int |en) - Allocates new memory to the invoking task,
starting atbase and extending for en bytes.

new_pages() will fail, returning a negative integer error codebdse is not page-aligned,
if | en is not a positive integral multiple of the system page sizany portion of the region
already represents memory in the task’s address space, ifetir memory region would
be too closé to the bottom of the automatic stack region, or if the opagpsystem has
insufficient resources to satisfy the request.

Otherwise, the return code will be zero and the new memorlyimihediately be visible
to all threads in the invoking task.

int renmove_pages(void *base) - Deallocates the specified memory region, which must
presently be allocated as the result of a previous calktapages() which specified the
same value obase. Returns zero if successful or returns a negative integleréacode.

Console I/O

e char getchar() - Returns a single character from the character input stréahe input

stream is empty the thread is descheduled until a charextavailable. If some other

1Two pages is too close. Other values might be too close also.

8

thread is descheduled orreadl i ne() orgetchar (), then the calling thread must block
and wait its turn to access the input stream. Characteregsed by thget char () system
call should not be echoed to the console.

e int readline(int len, char *buf) - Reads the nextline from the console and copies
it into the buffer pointed to bjuf .

If there is no line of input currently available, the callittyead is descheduled until one
is. If some other thread is descheduled aread! i ne() or aget char (), then the calling
thread must block and wait its turn to access the input strédme length of the buffer is
indicated byl en. If the line is smaller than the buffer, then the complete limcluding the
newline character is copied into the buffer. If the lengthiad line exceeds the length of
the buffer, onlyl en characters should be copied iritaf . Available characters should not
be committed intduf until there is a newline character available, so the usealthsnce
to backspace over typing mistakes.

Characters that will be consumed by @adl! i ne() should be echoed to the console as
soon as possible. If there is no outstanding call ¢adl i ne() no characters should
be echoed. Echoed user input may be interleaved with outpeita calls toprint ().
Characters not placed in the buffer should remain availtvlether calls ta eadl i ne()
and/orget char () . Some kernel implementations may choose to regard chasagtech
have been echoed to the screen but which have not been plaoea user buffer to be
“dedicated” tor ead! i ne() and not available tget char () .

The readline system call returns the number of bytes copiedthe buffer. An integer
error code less than zero is returneduf is not a valid memory address,qiif falls in a
read-only memory region of the task, ot #n is “unreasonably” largé.

e int print(int len, char *buf) - Printsl en bytes of memory, starting auf , to the
console. The calling thread should block until all charexcteave been printed to the
console. Output of two concurrepti nt () s should not be intermixed. Ifen is larger
than some reasonable maximum obuff is not a valid memory address, an integer error
code less than zero should be returned.

Characters printed to the console invoke standard newliaekspace, and scrolling
behaviors.

e int set_termcolor(int color) - Sets the terminal print color for any future output to
the console. Itol or does not specify a valid color, an integer error code less #eso
should be returned. Zero is returned on success.

e int set _cursor_pos(int row, int col) - Setsthe cursor to the locatipnow, col).
If the location is not valid, an integer error code less thamos returned. Zero is returned
on success.

2Deciding on this threshold is easier than it may seem at fistif you feel like you need to ask us for a
clarification you should probably think further.

e int get _cursor_pos(int *row, int *col) - Writes the current location of the cursor

4.8

to the addresses provided as arguments. If the argumentetwvalid addresses, then an
error code less than zero is returned. Zero is returned aressac

Miscellaneous System Interaction

int I's(int size, char *buf) - Fills in the user-specified buffer with the names of
executable files stored in the system’s RAM disk “file systeththere is enough room
in the buffer for all of the (null-terminated) file namasd an additional null byte after
the last filename’s terminating null, the system call wililurea the number of filenames
successfully copied. Otherwise, an error code less thamigeeturned and the contents
of the buffer are undefined. For the curious among you, thesesy call is (very) loosely
modeled on the System §ét dent s() call.

void halt() - Ceases execution of the operating system. The exact apet this
system call depends on the kernel’s implementation andugxecenvironment. Kernels
running under Simics should shut down the simulation viallde&l Mhal t () . However,
implementations should be prepared to do something rebboii&l Mhal t () is a no-op,
which will happen if the kernel is run on real hardware.

10

	Introduction
	Overview

	User Execution Environment
	The System Call Interface
	Invocation and Return
	Semantics of System Call Interface
	System Call Stub Library

	System Call Specifications
	Overview
	Task & Thread IDs
	Per-thread ``run flag''
	Life Cycle
	Thread Management
	Memory Management
	Console I/O
	Miscellaneous System Interaction

