15-410

“...What about gummy bears?...”

Security Applications
Apr. 27, 2007

Dave Eckhardt
Bruce Maggs

PGP diagram shamelessly stolen from 15-441

SecurlD picture clipped from rsa.com

L37_Security 15-410, S’07

Synchronization

P3extra and P4 hand-in directories have been create d
= Please check IMMEDIATELY to make sure yours is there
= Please make sure you can store files there
= Check disk space

Faculty Course Evaluations
= http://www.cmu.edu/fce

Look for Homework 2 release soon
= Due next Friday...no late days

15-410, S'07

Outline

Today
= Warm-up: Password file
= One-time passwords
= Review: private-key, public-key crypto
= Kerberos
= SSL
= PGP
= Biometrics

Disclaimer

= Presentations will be key ideas, not exact protocol S
= Actual protocols are larger

15-410, S'07

Password File

Goal
= User memorizes a small key
= User presents key, machine verifies it

Wrong approach
= Store keys (passwords) in file
= Why is this bad? What is at risk?

alice : Whimsy33Fish/
bob : secret
chas : secret

15-410, S'07

Hashed Password File

Better
= Store hash(key)
= hash(“Whimsy33Fish/”) = X93f3ZaWhT
= hash(“secret”) = fg8ReCFySk

= User presents key
= Login computes hash(key) , compares to file

alice : X93f3ZawhT
bob :fg8ReCFySk
chas : fg8ReCFySk

15-410, S'07

Hashed Password File

Password file no longer must be secret
= [t doesn't contain keys, only key hashes

Still vulnerable to dictionary attack
= Cracker computes hash(“a”) , hash(“b”) , stores reverse

= unhash(*54GtYuREDbK”) = “a”

= unhash(*PoLka67vab”) = “p”
= Once computed, hash = password list attacks many users

= unhash(* fg8ReCFySk ") = “secret” hits Bob and Chas
= Note: cracker may quit before hash(* Whimsy33Fish/)

“Arguably less wrong”

= Can we make the cracker's job harder?
15-410, S'07

Salted Hashed Password File

Choose random number when user sets password
= Store #, hash(#,key)

= hash(“Xz Whimsy33Fish/”) = UIR34EXWmT
= hash(“p0 secret”) = 998ueTRVMXx
= hash(*9Q secret”) = opTkr7Sfh3

User presents key
= Login looks up user, learns #
= Login computes hash(#,typed-key) , compares to file

alice : Xz : UIR34EXWmT
bob :p0:998ueTRvMx
chas :9Q : opTkr7Sfh3

15-410, S'07

Salted Hashed Password File

Evaluation

= Zero extra work for user
= Saltis invisible
= User still remembers just the password

= Trivial extra space & work for login
= Store a few more bytes
= Hash a slightly-longer string

= Pre-computed dictionary must be much larger
= Without salt: cracker must hash all “words”
= With salt: cracker must hash (all “words”) X (all # 'S)
» 2 random salt bytes [A-Za-z0-9] increases work 3844 -fold
» Linear work for target, exponential work for cracke r

Can we do even better?
8 15-410, S'07

Shadow Salted Hashed Password
File

Protect the password file after all

“Defense in depth” - Cracker must

= Either
= Compute enormous all-word/all-salt dictionary
= Break system security to get hashed password file
= Scan through enormous all-word/all-salt dictionary
= Or
= Break system security to get hashed password file
= Run all-word attack on each user in password file

There are probably easier ways into the system
= ...such as bribing a user!

15-410, S'07

10

One-time passwords

What if somebody does eavesdrop?
= Can they undetectably impersonate you forever?

Approach

= System (and user!) store key list
= User presents head of list, system verifies
= User and system both destroy key at head of list

Alternate approach
= Portable cryptographic clock
= Sealed box which displays E(time, key)

= Only box, server know key
= User types in display value as a password

' BEEEER

RSA Securlm®

15-410, S’07

11

Cryptography on One Slide

Symmetric / private-key cipher
cipher = E(text , Key)
text = E(cipher , Key)

Asymmetric / public-key cipher (aka “magic”)
cipher = E(text , Keyl)
text = D(cipher , Key2)

15-410, S’07

12

Reminder: Public Key Sighatures

Write a document
Encrypt it with your private key

= Nobody else can do that
Transmit plaintext and ciphertext of document
Anybody can decrypt with your public key

= |f they match, the sender knew your private key
= ...sender was you, more or less

Actually
= send E(hash(msg), K pivate)

15-410, S'07

13

Comparison

Private-key algorithms
= Fast crypto, small keys
= Secret-key-distribution problem

Public-key algorithms
= “Telephone directory” key distribution
= Slow crypto, keys too large to memorize

Can we get the best of both?

15-410, S’07

Kerberos

Goals
= Use fast private-key encryption
= Require users to remember one small key
= Authenticate & encrypt for N users, M servers

Problem

= Private-key encryption requires shared key to
communicate

= Can't deploy & use system with NxM keys!

Intuition
= Trusted third party knows single key of every user, server

= Distributes temporary keys to (user,server) ondema nd
14 15-410, S'07

15

Not Really Kerberos

Authenticating to a “server”
= Client = deQOu, server = ANDREW.CMU.EDU AFS cell

Client contacts server with a ticket

= Specifies identity of holder
= Server will use identity for access control checks
= Specifies session key for encryption
= Server will decrypt messages from client
= Also provides authentication —only client can encr ypt with
that key
= Specifies time of issuance
= Ticket “times out”
= Client must get another one —re-prove it knows its key

15-410, S'07

Not Really Kerberos

Ticket format
= Ticket={client,time,K assion 1Ks
= {client, time, session key} DES-encrypted with serv er's key

Observations
= Server knows K ¢, can decrypt & understand the ticket

« Clients can't fake tickets, since they don't know K ¢

= Session key is provided to server via encrypted cha nnel
= Eavesdroppers can't learn session key
= Client-server communication using K ¢ will be secure

How do clients get tickets?

= Only server & “Kerberos Distribution Center” know K G-
16 15-410, S'07

17

Not Really Kerberos

Client sends to Key Distribution Center
= “l want a ticket for the printing service”
= {client, server, time}

KDC sends client two things
s {Kgession -Server,time}k

= Client can decrypt this to learn session key
= Client knows when the ticket will expire

« Ticket={client,time,K assion 1Ks

= Client cannot decrypt ticket
= Client can transmit ticket to server as opaque data

15-410, S'07

18

Not Really Kerberos

Results (client)

= Client has session key for encryption
= Can trust that only desired server knows it

Results (server)
= Server knows identity of client
= Server knows how long to trust that identity

= Server has session key for encryption
= Data which decrypt meaningfully must be from that c

lient

15-410, S'07

19

Not Really Kerberos

Results (architecture)
= N users, M servers

= System has N+M keys
= Like a public-key crypto system
= But fast private-key ciphers are used

= Each entity remembers only one (small) key
= “Single-sign on”: one password per user

Any weakness?

15-410, S'07

20

Securing a Kerberos Realm

KDC (Kerberos Distribution Center)

= Single point of failure

= |fit's down, clients can't get tickets to contact more
servers...

» Multiple instances of server (master/slave)
= Knows all keys in system
= Single point of compromise
» Deployed in locked boxes in (multiple) machine rooms
= Very delicate to construct & deploy
= Turn off most Internet services
= Maybe boot from read-only media
= Maybe booting requires entry of master password
= Unwise to back up key database to “shelf full of ta pes”

15-410, S'07

21

SSL

Goals
= Fast, secure communication
= Any client can contact any server on planet

Problems

= There is no single trusted key server for the whole
= Can't use Kerberos approach

= Solution: public-key cryptography?

planet

15-410, S'07

22

SSL

Goals
= Fast, secure communication
= Any client can contact any server on planet

Problems

= There is no single trusted key server for the whole
= Can't use Kerberos approach

= Solution: public-key cryptography?
= Interesting issue: public key algorithms are slow
= Huge problem: there is no global public-key directo

planet

ry

15-410, S'07

23

SSL Approach (Wrong)

Approach
= Use private-key/symmetric encryption for speed

= Swap symmetric session keys via public-key crypto
= Temporary random session keys similar to Kerberos

Steps
= Client looks up server's public key in global direc tory

= Client generates random DES session key

= Client encrypts session key using server's RSA publ Ic key

= Now client & server both know session key

= Client knows it is talking to the desired server
= After all, nobody else can do the decrypt...

15-410, S'07

24

SSL Approach (Wrong)

Problem
= There is no global key directory

= Would be a single point of compromise
= False server keys enable server spoofing

= |f you had a copy of one it would be out of date
= Some server would be deployed during your download

Approach
= Replace global directory with chain of trust
= Servers present their own keys directly to clients
= Keys are signed by “well-known” certifiers

15-410, S'07

Not SSL

Server “certificate”

= “To whom it may concern, whoever can decrypt
messages encrypted with public key
AAFD01234DE34BEEF997C is www.cmu.edu”

Protocol operation
= Client calls server, requests certificate
= Server sends certificate
= Client generates private-key session key
= Client sends {K <ession tKserver 10 S€IVEr

= If server can decrypt and use K .o.sion - It Must be legit

Any problem...?
25 15-410, S'07

SSL Certificates

How did we know to trust that certificate?

Certificates are signed by certificate authorities

= “Whoever can decrypt messages encrypted with public
key AAFD01234DE34BEEF997C is www.cmu.edu
= Signed, Baltimore CyberTrust
» SHA-1 hash of statement: 904ffa3bb39348aas
» Signhature of hash: 433432af33551a343c143143fd11

Certificate verification
= Compute SHA-1 hash of server's key statement

= Look up public key of Baltimore CyberTrust in globa I
directory...oops!

26 15-410, S'07

27

SSL Certificates

How did we know to trust the server's certificate?
= Certificates signed by certificate authorities

= Browser vendor ships CA public keys in browser
= Check your browser's security settings, see who you
= “Chain of trust”

= Mozilla.org certifies Baltimore Cybertrust
= Baltimore Cybertrust certifies, ex., www.cmu.edu

trust!

15-410, S'07

28

SSL Certificates

How did we know to trust the server's certificate?
= Certificates signed by certificate authorities

= Browser vendor ships CA public keys in browser
= Check your browser's security settings, see who you

= “Chain of trust”
= Mozilla.org certifies Baltimore Cybertrust
= Baltimore Cybertrust certifies, ex., www.cmu.edu
= Say, who actually certifies www.cmu.edu?

trust!

15-410, S'07

29

SSL Certificates

How did we know to trust the server's certificate?
= Certificates signed by certificate authorities

= Browser vendor ships CA public keys in browser
= Check your browser's security settings, see who you trust!

= “Chain of trust”
= Mozilla.org certifies Baltimore Cybertrust
= Baltimore Cybertrust certifies, ex., www.cmu.edu
= Say, who actually certifies www.cmu.edu?
» As of 2007-04-26: “Comodo Limited”
» You've heard of them, right? Household name?

15-410, S'07

30

SSL Certificates

How did we know to trust the server's certificate?
= Certificates signed by certificate authorities

= Browser vendor ships CA public keys in browser
= Check your browser's security settings, see who you trust!

= “Chain of trust”
= Mozilla.org certifies Baltimore Cybertrust
= Baltimore Cybertrust certifies, ex., www.cmu.edu
= Say, who actually certifies www.cmu.edu?
» As of 2006-04-28: “Comodo Limited”
» You've heard of them, right? Household name?
» How about “NetLock Halozatbiztonsagi Kft.”???

15-410, S'07

PGP

Goal
= “Pretty Good Privacy” for the masses

= Without depending on a central authority

Approach
= Users generate public-key key pairs

= Public keys stored “on the web” (pgpkeys.mit.edu)
= Global directory (untrusted, like a whiteboard)

= We have covered how to send/receive/sign secret e-m

Problem
= How do | trust a public key | get from “on the web™?

31

ail

15-410, S'07

32

“On the Web”

PGP key server protocol

= ??7: Here is deOu@andrew.cmu.edu's latest public ke !
= Server: “Great, I'll provide it when anybody asks!”

= Alice: What is deOu@andrew.cmu.edu's public key?
= Server: Here are 8 possibilities...you decide which to trust!

How do | trust a public key | get “from the web™?

= “Certificate Authority” approach has issues
= They typically charge $50-$1000 per certificate per year
= They are businesses...governments can lean on them
» ...to present false keys...
» ...to delete your key from their directory...
» ...to refuse to sign your key...

15-410, S'07

PGP

“Web of trust”
= Dave and Wes swap public keys (“key-signing party”)

= Wes signs Dave's public key

= “037022D7 is the fingerprint of deOu@andrew.cmu.edu 's
key” -- sincerely, 77432900

= Publishes signature on one or more web servers
= Matt and Wes swap public keys (at lunch)

Using the web of trust

= Matt fetches Dave's public key from the web
= Verifies Wes's signature on it

= Matt can safely send secret mail to Dave

= Matt can verify digital signatures from Dave
33 15-410, S'07

34

PGP “key rings”

Private key ring
= All of your private keys
= Each encrypted with a “pass phrase”

= Should be longer & more random than a password
= |f your private keys leak out, you can't easily cha

Public key ring
= Public keys of various people

= Each has one or more signatures

= Some are signed by you —your PGP will use without
complaint

nge them

15-410, S'07

35

PGP Messages

Message goals
= Decryptable by multiple people (recipients of ane- mail)
= Large message bodies decryptable quickly
= Message size not proportional to number of receiver S

Message structure

= One message body, encrypted with a symmetric cipher
= Using a random “session” key

= N key packets
= Session key public-key encrypted with one recipient 's key

15-410, S'07

Not PGP

Alice Bob
Sa(H(M)) H(M) VA(SA(H(M)))

i T

i
K — Ex(M, S,(H(M))) K M SA(H(M))
i PN N

EB(K)1 EK(M1 SA(H(M))) — DB(EB(K)) DK(EK(M1 SA(H(M))))

Note: on this slide, E.(a, b) means ...“a and b"...with K
(Notation closer to textbook's than to mine)

36 15-410, S'07

37

Biometrics

Concept

= Tie authorizationto who you are
= Not what you know —can be copied

= Hard to impersonate a retina
= Or a fingerprint

15-410, S'07

38

Biometrics

Concept

= Tie authorizationto who you are
= Not what you know —can be copied

= Hard to impersonate a retina
= Or a fingerprint

Right?

15-410, S'07

39

Biometrics

Concept

= Tie authorizationto who you are
= Not what you know —can be copied

= Hard to impersonate a retina
= Or a fingerprint

Right?

= What about gummy bears?

15-410, S’07

40

Biometrics

Concept

= Tie authorizationto who you are
= Not what you know —can be copied

= Hard to impersonate a retina
= Or a fingerprint
Right?
= What about gummy bears?
= What about carjackers?

15-410, S’07

41

Summary

Many threats

Many techniques

“The devil is in the details”

Just because it “works” doesn't mean it's right!
Open algorithms, open source

15-410, S'07

42

Further Reading

Kerberos: An Authentication Service for Computer
Networks
= B. Clifford Neuman, Theodore Ts'o
= USC/ISI Technical Report ISI/RS-94-399

Impact of Artificial “Gummy” Fingers on Fingerprint
Systems
= Matsumoto et al.
= http://cryptome.org/gummy.htm

Amputation hazards of biometrics
= http://www.theregister.co.uk/2005/04/04/fingerprint ~ _merc_chop/

15-410, S'07

43

Further Reading

PGP Pathfinder

= http://www.cs.uu.nl/people/henkp/henkp/pgp/pathfind
970227D/to/5B0358A2.html

er/paths/3

15-410, S'07

