
1

NFS & AFS

Dave Eckhardt
de0u@andrew.cmu.edu

Bruce Maggs
user 1915@cs.cmu.edu

“Good judgment comes from experience…
Experience comes from bad judgment.”
- attributed to many

2

Synchronization

� Who runs shell? Passes test suite?
� Who will be around April 16th at midnight?
� Today

− NFS, AFS

− Partially covered by textbook: 11.9, 17.6
− Chapter 17 is short, why not just read it?

4

Outline

� Why remote file systems?
� VFS interception
� NFS vs. AFS

− Architectural assumptions & goals

− Namespace
− Authentication, access control
− I/O flow

− Rough edges

5

Why?

� Why remote file systems?
� Lots of “access data everywhere” technologies

− Laptop
− Multi-gigabyte flash-memory keychain USB

devices

− 4G Hitachi MicroDrive fits in a CompactFlash
slot

− iPod
� Are remote file systems dinosaurs?

6

Remote File System Benefits
� Reliability

− Not many people carry multiple copies of data
� Multiple copies with you aren't much protection

− Backups are nice
� Machine rooms are nice

− Temperature-controlled, humidity-controlled
− Fire-suppressed

� Time travel is nice too
� Sharing

− Allows multiple users to access data
− May provide authentication mechanism

7

Remote File System Benefits

� Scalability

− Large disks are cheaper
� Locality of reference

− You don't use every file every day...
� Why carry everything in expensive portable storage?

� Auditability

− Easier to know who said what when with central
storage...

8

What Is A Remote File System?

� OS-centric view

− Something that supports file-system system
calls “for us”

� Other possible views

− RFS/DFS architect, for example

− Mostly out of scope for this class
� Compared today

− Sun Microsystems NFS
− CMU/IBM/Transarc/IBM/open-source AFS

9

VFS interception

� VFS provides “pluggable” file systems
� Standard flow of remote access

− User process calls read()
− Kernel dispatches to VOP_READ() in some VFS
− nfs_read()

� check local cache
� send RPC to remote NFS server
� put process to sleep

10

VFS interception

� Standard flow of remote access (continued)

− client kernel process manages call to server
� retransmit if necessary
� convert RPC response to file system buffer
� store in local cache
� wake up user process

− back to nfs_read()
� copy bytes to user memory

11

NFS Assumptions, goals

� Workgroup file system

− Small number of clients
− Very small number of servers

� Single administrative domain

− All machines agree on “set of users”
� ...which users are in which groups

− Client machines run mostly-trusted OS
� “User #37 says read(...)”

12

NFS Assumptions, goals

� “Stateless” file server

− Of course files are “state”, but...
− Server exports files without creating extra state

� No list of “who has this file open”
� No “pending transactions” across crash

− Result: crash recovery “fast”, protocol “simple”

13

NFS Assumptions, goals

� “Stateless” file server

− Of course files are “state”, but...
− Server exports files without creating extra state

� No list of “who has this file open”
� No “pending transactions” across crash

− Result: crash recovery “fast”, protocol “simple”
� Some inherently “stateful” operations

− File locking

− Handled by “separate service” “outside of NFS”
� Slick trick, eh?

14

AFS Assumptions, goals

� Global distributed file system

− Uncountable clients, servers
− “One AFS”, like “one Internet”

� Why would you want more than one?
� Multiple administrative domains

− username@cellname
− de0u@andrew.cmu.edu

− davide@cs.cmu.edu

15

AFS Assumptions, goals

� Client machines are un-trusted

− Must prove they act for a specific user
� Secure RPC layer

− Anonymous “system:anyuser”
� Client machines have disks (!!)

− Can cache whole files over long periods
� Write/write and write/read sharing are rare

− Most files updated by one user
− Most users on one machine at a time

16

AFS Assumptions, goals

� Support many clients

− 1000 machines could cache a single file
− Some local, some (very) remote

17

NFS Namespace

� Constructed by client-side file system mounts

− mount server1:/usr/local /usr/local
� Group of clients can achieve common

namespace

− Every machine can execute same mount
sequence at boot

− If system administrators are diligent

18

NFS Namespace

� “Auto-mount” process based on “maps”

− /home/dae means server1:/home/dae
− /home/owens means server2:/home/owens

19

NFS Security

� Client machine presents credentials

− user #, list of group #s – from Unix process
� Server accepts or rejects credentials

− “root squashing”
� map uid 0 to uid -1 unless client on special machine

list
� Kernel process on server “adopts” credentials

− Sets user #, group vector based on RPC
− Makes system call (e.g., read()) with those

credentials

20

AFS Namespace

� Assumed-global list of AFS cells
� Everybody sees same files in each cell

− Multiple servers inside cell invisible to user
� Group of clients can achieve private

namespace

− Use custom cell database

21

AFS Security

� Client machine presents Kerberos ticket

− Allows arbitrary binding of (machine,user) to
(realm,principal)

� davide on a cs.cmu.edu machine can be
de0u@andrew.cmu.edu

� iff the password is known!
� Server checks against access control list

22

AFS ACLs

� Apply to directory, not to individual files
� ACL format

− de0u rlidwka
− davide@cs.cmu.edu rl
− de0u:friends rl

� Negative rights

− Disallow “joe rl” even though joe is in
de0u:friends

23

AFS ACLs

� AFS ACL semantics are not Unix semantics

− Some parts obeyed in a vague way
� Cache manager checks for files being executable,

writable

− Many differences
� Inherent/good: can name people in different

administrative domains
� “Just different”

− ACLs are per-directory, not per-file
− Different privileges: create, remove, lock

− Not exactly Unix / not tied to Unix

24

NFS protocol architecture

� root@client executes mount-filesystem RPC

− returns “file handle” for root of remote file system
� client RPC for each pathname component

− /usr/local/lib/emacs/foo.el in /usr/local file system
� h = lookup(root-handle, “lib”)
� h = lookup(h, “emacs”)
� h = lookup(h, “foo.el”)

− Allows disagreement over pathname syntax
� Look, Ma, no “/”!

25

NFS protocol architecture

� I/O RPCs are idempotent
− multiple repetitions have same effect as one
− lookup(h, “emacs”) generally returns same result

− read(file-handle, offset, length) ⇒ bytes

− write(file-handle, offset, buffer, bytes)
� RPCs do not create server-memory state

− no RPC calls for open()/close()
− write() succeeds (to disk) or fails before RPC

completes

26

NFS file handles

� Goals

− Reasonable size
− Quickly map to file on server

− “Capability”
� Hard to forge, so possession serves as “proof”

� Implementation (inode #, inode generation #)

− inode # - small, fast for server to map onto data

− “inode generation #” - must match value stored
in inode

� “unguessably random” number chosen in create()

27

NFS Directory Operations

� Primary goal

− Insulate clients from server directory format
� Approach

− readdir(dir-handle, cookie, nbytes) returns list
� name, inode # (for display by ls -l), cookie

28

AFS protocol architecture

� Volume = miniature file system

− One user's files, project source tree, ...
− Unit of disk quota administration, backup

− Mount points are pointers to other volumes
� Client machine has Cell-Server Database

− /afs/andrew.cmu.edu is a cell
− protection server handles authentication
− volume location server maps volumes to file

servers

29

AFS protocol architecture

� Volume location is dynamic
− Moved between servers transparently to user

� Volumes may have multiple replicas
− Increase throughput, reliability
− Restricted to “read-only” volumes

� /usr/local/bin
� /afs/andrew.cmu.edu/usr

30

AFS Callbacks

� Observations

− Client disks can cache files indefinitely
� Even across reboots

− Many files nearly read-only
� Contacting server on each open() is wasteful

� Server issues callback promise
− If this file changes in 15 minutes, I will tell you

� callback break message

− 15 minutes of free open(), read() for that client
� More importantly, 15 minutes of peace for server

31

AFS file identifiers

� Volume number

− Each file lives in a volume
− Unlike NFS “server1's /usr0”

� File number

− inode # (as NFS)
� “Uniquifier”

− allows inodes to be re-used

− Similar to NFS file handle inode generation #s

32

AFS Directory Operations

� Primary goal

− Don't overload servers!
� Approach

− Server stores directory as hash table on disk
− Client fetches whole directory as if a file

− Client parses hash table
� Directory maps name to fid

− Client caches directory (indefinitely, across
reboots)

� Server load reduced

33

AFS access pattern

open(“/afs/cs.cmu.edu/service/systypes”)

− VFS layer hands off “/afs” to AFS client
module

− Client maps cs.cmu.edu to pt & vldb servers
− Client authenticates to pt server
− Client volume-locates root.cell volume
− Client fetches “/” directory
− Client fetches “service” directory
− Client fetches “systypes” file

34

AFS access pattern

open(“/afs/cs.cmu.edu/service/newCSDB”)

− VFS layer hands off “/afs” to AFS client module

− Client fetches “newCSDB” file

open(“/afs/cs.cmu.edu/service/systypes”)

− Assume
� File is in cache
� Server hasn't broken callback
� Callback hasn't expired

− Client can read file with no server interaction

35

AFS access pattern

� Data transfer is by chunks
− Minimally 64 KB
− May be whole-file

� Writeback cache

− Opposite of NFS “every write is sacred”

− Store chunk back to server
� When cache overflows
� On last user close()

36

AFS access pattern

� Is writeback crazy?

− Write conflicts “assumed rare”
− Who needs to see a half-written file?

37

NFS “rough edges”

� Locking

− Inherently stateful
� lock must persist across client calls

− lock(), read(), write(), unlock()

− “Separate service”
� Handled by same server
� Horrible things happen on server crash
� Horrible things happen on client crash

38

NFS “rough edges”

� Some operations not really idempotent

− unlink(file) returns “ok” once, then “no such file”
− server caches “a few” client requests

� Cacheing

− No real consistency guarantees

− Clients typically cache attributes, data “for a
while”

− No way to know when they're wrong

39

NFS “rough edges”

� Large NFS installations are brittle

− Everybody must agree on many mount points
− Hard to load-balance files among servers

� No volumes
� No atomic moves

� Cross-realm NFS access basically nonexistent

− No good way to map uid#47 from an unknown
host

40

AFS “rough edges”

� Locking

− Server refuses to keep a waiting-client list
− Client cache manager refuses to poll server

− User program must invent polling strategy
� Chunk-based I/O

− No real consistency guarantees

− close() failures surprising

41

AFS “rough edges”

� ACLs apply to directories
− “Makes sense” if files will inherit from directories

� Not always true

− Confuses users
� Directories inherit ACLs

− Easy to expose a whole tree accidentally
− What else to do?

� No good solution known
� DFS horror

42

AFS “rough edges”

� Small AFS installations are punitive

− Step 1: Install Kerberos
� 2-3 servers
� Inside locked boxes!

− Step 2: Install ~4 AFS servers (2 data, 2 pt/vldb)
− Step 3: Explain Kerberos to your users

� Ticket expiration!

− Step 4: Explain ACLs to your users

43

Summary - NFS

� Workgroup network file service
� Any Unix machine can be a server (easily)
� Machines can be both client & server

− My files on my disk, your files on your disk

− Everybody in group can access all files
� Serious trust, scaling problems
� “Stateless file server” model only partial

success

44

Summary – AFS

� Worldwide file system
� Good security, scaling
� Global namespace
� “Professional” server infrastructure per cell

− Don't try this at home
− Only ~190 AFS cells (2005-11, also 2003-02)

� 8 are cmu.edu, ~15 are in Pittsburgh
� “No write conflict” model only partial success

45

Further Reading

� NFS

− RFC 1094 for v2 (3/1989)
− RFC 1813 for v3 (6/1995)

− RFC 3530 for v4 (4/2003)

46

Further Reading

� AFS

− “The ITC Distributed File System: Principles and
Design”, Proceedings of the 10th ACM
Symposium on Operating System Principles,
Dec. 1985, pp. 35-50.

− “Scale and Performance in a Distributed File
System”, ACM Transactions on Computer
Systems, Vol. 6, No. 1, Feb. 1988, pp. 51-81.

− IBM AFS User Guide, version 36

− http://www.cs.cmu.edu/~help/afs/index.html

