
1

Deadlock (1)

Dave Eckhardt
Bruce Maggs

Geoff Langdale

L13_Deadlock

2

Synchronization – P2

� You should really have

� Figured out where wrappers belong, why

� Made some system calls

� Designed mutexes, condition variables

� Drawn pictures of thread stacks (even if not perfec t)

� Mutexes and condition variables nearly coded

� By Wednesday you should really have

� Thoughtful design for thr_create(), thr_join()

� Some code for thr_create(), and some “experience”

3

Synchronization – P2

� Debugging reminder

� We can't really help with queries like:
� We did x...
� ...something happened other than our expectation...
� ...can you tell us why?

� You need to progress beyond “ something happened”
� What was it that happened, exactly?
� printf() is not always the right tool

� produces correct output only if run-time environmen t is right
� captures only what you told it to, only “C-level” s tuff
� changes your code by its mere presence!!!

� Overall, maybe re-read “Debugging” lecture notes

4

Synchronization – Readings

� Next three lectures

� Deadlock: 6.5.3, 6.6.3, Chapter 7

� Reading ahead

� Scheduling: Chapter 5

� Virtual Memory: Chapter 8, Chapter 9

5

Outline

� Process resource graph

� What is deadlock?

� Deadlock prevention

� Next time

� Deadlock avoidance

� Deadlock recovery

6

Tape Drives

� A word on “tape drives”

� Ancient computer resources

� Access is sequential, read/write

� Any tape can be mounted on any drive

� One tape at a time is mounted on a drive
� Doesn't make sense for multiple processes to

simultaneously access a drive
� Reading/writing a tape takes a while

� Think “CD burner”...

7

Process/Resource graph

Tape 1

P1

Tape 2

P2

Tape 3

P3

Request

8

Process/Resource graph

Tape 1

P1

Tape 2

P2

Tape 3

P3

Allocation

9

Waiting

Tape 1

P1

Tape 2

P2

Tape 3

P3

10

Release

Tape 1

P1

Tape 2

P2

Tape 3

P3

11

Reallocation

Tape 1

P1

Tape 2

P2

Tape 3

P3

12

Multi-instance Resources

P1 P2 P3

Tapes Disks

13

Definition of Deadlock

� A deadlock

� Set of N processes

� Each waiting for an event
� ...which can be caused only by another process in the set

� Every process will wait forever

14

Deadlock Examples

� Simplest form

� Process 1 owns printer, wants tape drive

� Process 2 owns tape drive, wants printer

� Less-obvious

� Three tape drives

� Three processes
� Each has one tape drive
� Each wants “just” one more

� Can't blame anybody, but problem is still there

15

Deadlock Requirements

� Mutual Exclusion

� Hold & Wait

� No Preemption

� Circular Wait

16

Mutual Exclusion

� Resources aren't “thread-safe” (“reentrant”)

� Must be allocated to one process/thread at a time

� Can't be shared

� Programmable Interrupt Timer
� Can't have a different reload value for each proces s

17

Hold & Wait

� Process holds some resources while waiting for more

mutex_lock(&m1);
mutex_lock(&m2);
mutex_lock(&m3);

� This locking behavior is typical

18

No Preemption

� Can't force a process to give up a resource

� Interrupting a CD-R burn creates a “coaster”

� So don't do that

� Obvious solution

� CD-R device driver forbids second simultaneous open()

� If you can't open it, you can't pre-empt it...

19

Circular Wait

� Process 0 needs something process 4 has

� Process 4 needs something process 7 has

� Process 7 needs something process 1 has

� Process 1 needs something process 0 has – uh-oh...

� Described as “cycle in the resource graph”

20

Cycle in Resource Graph

Tape 2

P1

Tape 1

P2

Tape 3

P3

21

Deadlock Requirements

� Mutual Exclusion

� Hold & Wait

� No Preemption

� Circular Wait

� Each deadlock requires all four

22

Multi-Instance Cycle

P3P2P1

Tapes Disks

23

Multi-Instance Cycle (With Rescuer!)

P3P2P1

Tapes Disks

24

Cycle Broken

P3P2P1

Tapes Disks

25

Dining Philosophers

� The scene

� 410 staff at a Chinese restaurant

� A little short on utensils

26

Dining Philosophers

MKNF

MB

DEBM

27

Dining Philosophers

� Processes

� 5, one per person

� Resources

� 5 bowls (dedicated to a diner: no contention: ignor e)

� 5 chopsticks

� 1 between every adjacent pair of diners

� Contrived example?

� Illustrates contention, starvation, deadlock

28

Dining Philosophers

� A simple rule for eating

� Wait until the chopstick to your right is free; tak e it

� Wait until the chopstick to your left is free; take it

� Eat for a while

� Put chopsticks back down

29

Dining Philosophers Deadlock

� Everybody reaches right...

� ...at the same time?

30

Reaching Right

MKNF

MB

DEBM

31

Process graph

MKNF

MB

DEBM

32

Deadlock!

MKNF

MB

DEBM

33

Dining Philosophers – State

int stick[5] = { -1 }; /* owner */
condition avail[5]; /* newly avail. */
mutex table = { available };

/* Right-handed convention */

right = diner; /* 3 � 3 */

left = (diner + 4) % 5; /* 3 � 7 � 2 */

34

start_eating(int diner)

mutex_lock(table);

while (stick[right] != -1)
 condition_wait(avail[right], table);
stick[right] = diner;

while (stick[left] != -1)
 condition_wait(avail[left], table);
stick[left] = diner;

mutex_unlock(table);

35

done_eating(int diner)

mutex_lock(table);

stick[left] = stick[right] = -1;
condition_signal(avail[right]);
condition_signal(avail[left]);

mutex_unlock(table);

36

Can We Deadlock?

� At first glance the table mutex protects us

� Can't have “everybody reaching right at same time”. ..

� ...mutex means only one person can access table...

� ...so allows only one reach at the same time, right ?

37

Can We Deadlock?

� At first glance the table mutex protects us

� Can't have “everybody reaching right at same time”. ..

� ...mutex means only one person can access table...

� ...so allows only one reach at the same time, right ?

� Maybe we can!

� condition_wait() is a “reach”

� Can everybody end up in condition_wait()?

38

First diner gets both chopsticks

39

Next gets right, waits on left

40

Next two get right, wait on left

41

Last waits on right

42

First diner stops eating - briefly

43

First diner stops eating - briefly

 signal()

44

Next Step – One Possibility

“Natural” –
longest-waiting diner progresses

⇒

45

Next Step – Another Possibility

Or –
somebody else!

⇒

46

Last diner gets right, waits on left

47

First diner gets right, waits on left

48

Now things get boring

49

Deadlock - What to do?

� Prevention

� Avoidance

� Detection/Recovery

� Just reboot when it gets “too quiet”

50

1: Prevention

� Restrict behavior or resources

� Find a way to violate one of the 4 conditions
� To wit...?

� What we will talk about today

� 4 conditions, 4 possible ways

51

2: Avoidance

� Processes pre-declare usage patterns

� Dynamically examine requests

� Imagine what other processes could ask for

� Keep system in “safe state”

52

3: Detection/Recovery

� Maybe deadlock won't happen today...

� ...Hmm, it seems quiet...

� ...Oops, here is a cycle...

� Abort some process

� Ouch!

53

4: Reboot When It Gets “Too Quiet”

� Which systems would be so simplistic?

54

Four Ways to Forgiveness

� Each deadlock requires all four

� Mutual Exclusion

� Hold & Wait

� No Preemption

� Circular Wait

� “Deadlock Prevention” - this is a technical term

� Pass a law against one (pick one)

� Deadlock happens only if somebody transgresses!

55

Outlaw Mutual Exclusion?

� Approach: ban single-user resources

� Require all resources to “work in shared mode”

� Problem

� Chopsticks???

� Many resources don't work that way

56

Outlaw Hold&Wait?

� Acquire resources all-or-none

start_eating(int diner)

mutex_lock(table);
while (1)
 if (stick[lt] == stick[rt] == -1)
 stick[lt] = stick[rt] = diner
 mutex_unlock(table)
 return;
 condition_wait(released, table);

57

Problems

� “Starvation”

� Larger resource set makes grabbing everything harde r
� No guarantee a diner eats in bounded time

� Low utilization

� Larger peak resource needs hurts whole system alway s
� Must allocate 2 chopsticks (and waiter!)
� Nobody else can use waiter while you eat

58

Outlaw Non-preemption?

� Steal resources from sleeping processes!

start_eating(int diner)
right = diner; rright = (diner+1)%5;
mutex_lock(table);
while (1)
 if (stick[right] == -1)
 stick[right] = diner
 else if (stick[rright] != rright)
 /* right person can't be eating: take! */
 stick[right] = diner;
...same for left...
mutex_unlock(table);

59

Problem

� Some resources cannot be cleanly preempted

� CD burner

60

Outlaw Circular Wait?

� Impose total order on all resources

� Require acquisition in strictly increasing order

� Static order may work: allocate memory, then files

� Dynamic – may need to “start over” sometimes
� Traversing a graph

� lock(4), visit(4)
� lock(13), visit(13)
� lock(0)?

� Nope!
� unlock(4), unlock(13)
� lock(0), lock(4), lock(13), ...

61

Assigning Diners a Total Order

� Lock order: 4, 3, 2, 1, 0: right, then left

� lock (4,3) for one diner; lock(3,2) for neighbor, . ..

� Issue: (diner == 0) � (left == 4)

� Would lock(0), lock(4): left, then right!

� Requires special-case locking code to get order rig ht

if diner == 0
 right = (diner + 4) % 5;
 left = diner;
else
 right = diner;
 left = (diner + 4) % 5;
...

62

Problem

� May not be possible to force allocation order

� Some trains go east, some go west

63

Deadlock Prevention problems

� Typical resources require mutual exclusion

� All-at-once allocation can be painful

� Hurts efficiency

� May starve

� Resource needs may be unpredictable

� Preemption may be impossible

� Or may lead to starvation

� Ordering restrictions may be impractical

64

Deadlock Prevention

� Pass a law against one of the four ingredients

� Great if you can find a tolerable approach

� Very tempting to just let processes try their luck

65

Deadlock is not...

� ...a simple synchronization bug

� Deadlock remains even when those are cleaned up

� Deadlock is a resource usage design problem

� ...the same as starvation

� Deadlocked processes don't ever get resources

� Starved processes don't ever get resources

� Deadlock is a “progress” problem; starvation is a
“bounded waiting” problem

�that “after-you, sir” dance in the corridor

� That's “livelock” – continuous changes of state wit hout
forward progress

66

Next Time

� Deadlock Avoidance

� Deadlock Recovery

