15-410

"Luckily the stack is a simple data structure."

The Process Jan. 24, 2007

Dave Eckhardt
Bruce Maggs

L05_Process 15-410,S'07

Synchronization

P2/P3/P4 partners

- Partner deadline coming soon!
- If you already know who your partner is, please register now
 - It makes it easier for others to partner
 - It will stem the tide of annoying reminder e-mail

Synchronization

Anybody reading comp.risks?

This lecture

- Chapter 3, but not exactly!
 - We are skipping 3.5 and 3.6, including the terrifying "POSIX Shared Memory"

Outline

Process as pseudo-machine

(that's all there is)

Process life cycle

Process kernel states

Process kernel state

P1/P3 memory layout

(just a teaser for now)

The Computer

The Process

Process life cycle

(nomenclature courtesy of The Godfathers)

Birth

(or, well, fission)

School

Work

Death

Birth

Where do new processes come from?

(Not: under a cabbage leaf, by stork, ...)

What do we need?

- Memory contents
 - Text, data, stack
- CPU register contents (N of them)
- "I/O ports"
 - File descriptors, e.g., stdin/stdout/stderr
- Hidden "stuff"
 - timer state, current directory, umask

Birth

Intimidating?

How to specify all of that stuff?

• What is your {name,quest,favorite_color}?

Gee, we already have one process we like...

- Maybe we could use its settings to make a new one...
- Birth via "cloning"

Birth -fork() - 1

"fork" - Original Unix process creation system call

Memory

- Copy all of it
- Later lecture: VM tricks may make copy cheaper

Registers

- Copy all of them
 - All but one: parent learns child's process ID, child gets 0

Birth –fork() - 2

File descriptors

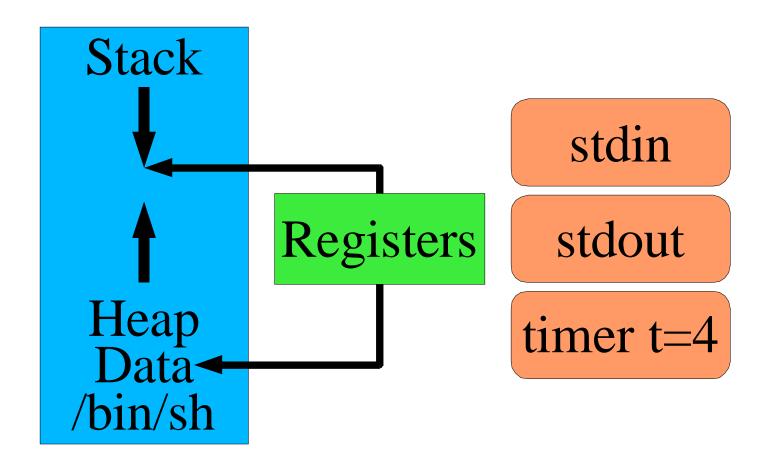
- Copy all of them
- Can't copy the files!
- Copy references to open-file state

Hidden stuff

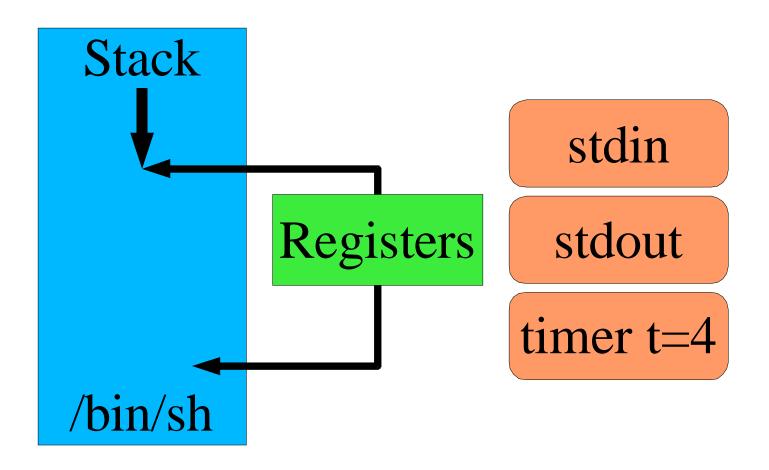
Do whatever is "obvious"

Result

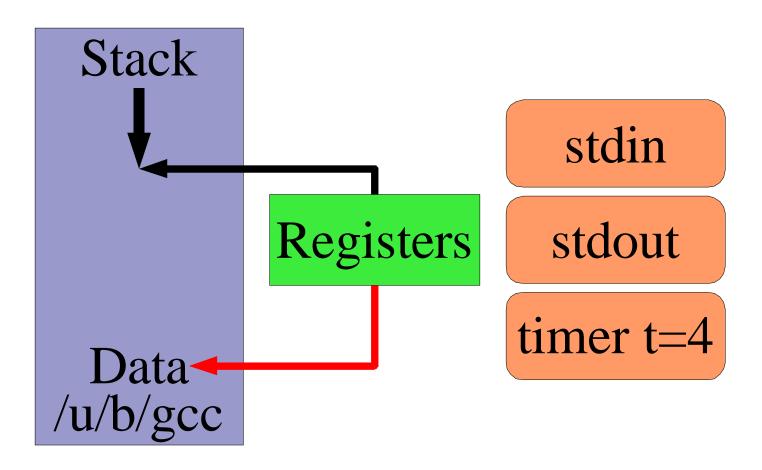
- Original, "parent", process
- Fully-specified "child" process, despite 0 parameters to fork()

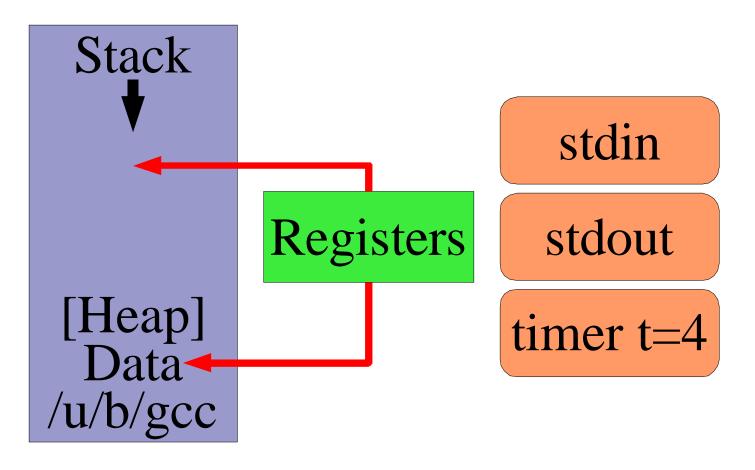

Now what?

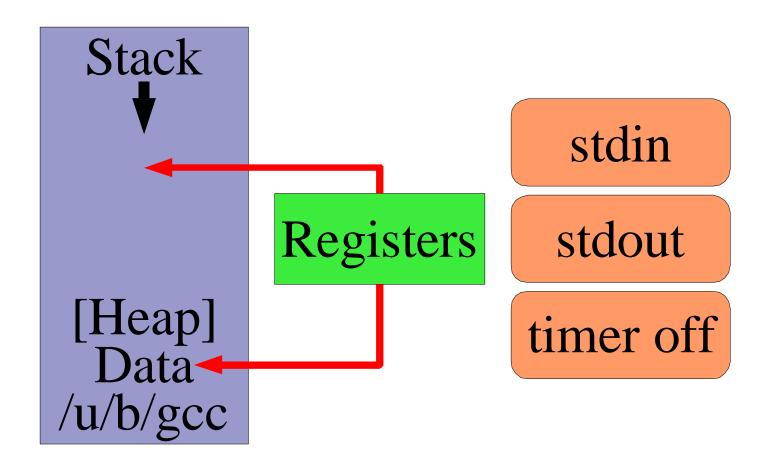
Two copies of the same process is boring

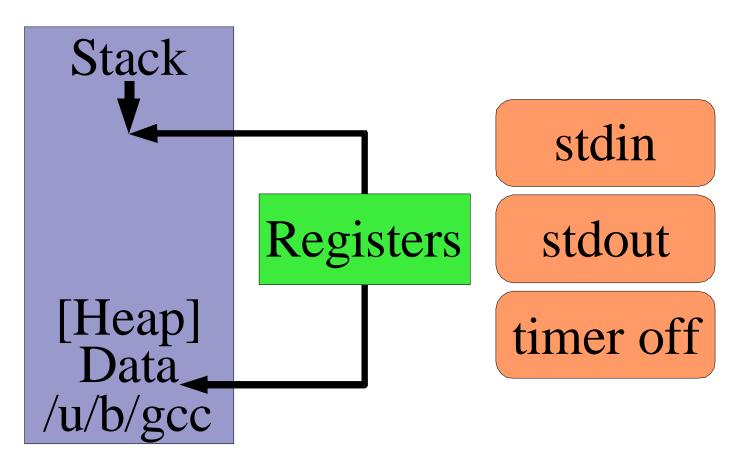

Transplant surgery!

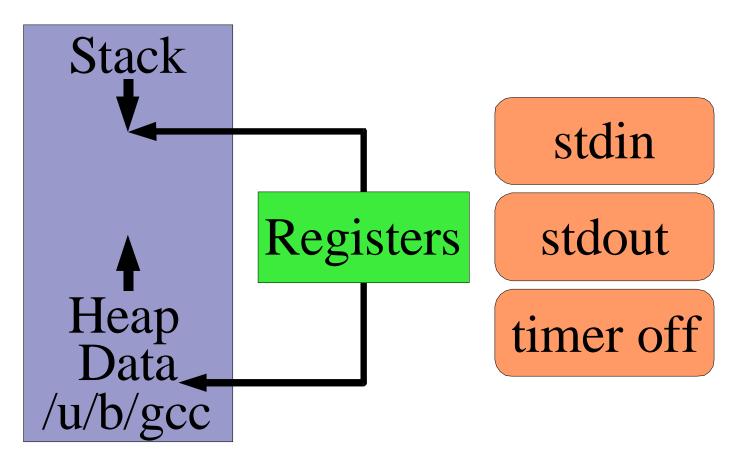
- Implant new memory!
 - New program text
- Implant new registers!
 - Old ones don't point well into the new memory
- Keep (most) file descriptors
 - Good for cooperation/delegation
- Hidden state?
 - Do what's "obvious"


Original Process


Toss Heap, Data


Load New Code, Data From File


Reset Stack, Heap


Fix "Stuff"

Initialize Registers

Begin Execution

What's The Implant Procedure Called?

```
int execve(
   char *path,
   char *argv[ ],
   char *envp[ ])
```

Birth - other ways

There is another way

Well, two

spawn()

- Carefully specify all features of new process
 - Complicated
- Win: don't need to copy stuff you will immediately toss

Plan 9 rfork() / Linux clone()

- Build new process from old one
- Specify which things get shared vs. copied
 - "Copy memory, share files, copy environment, share ..."

School

```
Old process called
      execve(
      char *path,
      char *argv[ ],
      char *envp[ ]);
```

```
Result is
main(int argc,
     char *argv[ ],
     char *envp[])
```

School

How does the magic work?

• 15-410 motto: No magic

Kernel process setup: we saw...

- Toss old data memory
- Toss old stack memory
- Load executable file

Also...

The Stack!

Kernel builds stack for new process

- Transfers argv[] and envp[] to top of new process stack
- Hand-crafts stack frame for __main()
- Sets registers
 - Stack pointer (to top frame)
 - Program counter (to start of __main())

Work

Process states

- Running
 - User mode or kernel mode
- Runnable
 - User mode or kernel mode
 - » Be sure to understand this
- Sleeping
 - "Blocked" awaiting some event
 - Scheduler: "do not run"
 - Q: User mode, kernel mode, both, neither?

Work

Other process states

- Forking
 - Probably obsolete, once used for special treatment
- Zombie
 - Process has called exit(), parent hasn't noticed yet

"Exercise for the reader"

Draw the state transition diagram

Voluntary

```
void exit(int reason);
```

Hardware exception

SIGSEGV - no memory there for you!

Software exception

SIGXCPU –used "too much" CPU time

System call - kill(pid, sig);

- "Deliver sig to process pid"
 - (negative values of pid have "interesting" behaviors)
- Keyboard ^C ⇒ equivalent of
 - kill(getpid(), SIGINT);
- Start/stop logging
 - kill(daemon_pid, SIGUSR1);
 - % kill -USR1 33
 - % kill -USR2 33
 - This is a "non-kill" use of kill()
- Any other key uses of kill()?

System call - kill(pid, sig);

- "Deliver sig to process pid"
 - (negative values of pid have "interesting" behaviors)
- Keyboard ^C ⇒ kill(getpid(), SIGINT);
- Start/stop logging kill -USR1 33
- "Lost in Space"!!
 - kill(Will_Robinson, SIGDANGER);

System call - kill(pid, sig);

- "Deliver sig to process pid"
 - (negative values of pid have "interesting" behaviors)
- Keyboard ^C ⇒ kill(getpid(), SIGINT);
- Start/stop logging kill -USR1 33
- "Lost in Space"!!
 - kill(Will_Robinson, SIGDANGER);
 - I apologize to IBM for lampooning their serious signal

System call - kill(pid, sig);

- "Deliver sig to process pid"
 - (negative values of pid have "interesting" behaviors)
- Keyboard ^C ⇒ kill(getpid(), SIGINT);
- Start/stop logging kill -USR1 33
- "Lost in Space"!!
 - kill(Will_Robinson, SIGDANGER);
 - I apologize to IBM for lampooning their serious signal
 - » No, I apologize for that apology...

Process cleanup

Resource release

- Open files: close() each
 - TCP: 2 minutes (or more)
 - Solaris disk offline forever ("None shall pass!")
- Memory: release

Accounting

Record resource usage in a magic file

Gone?

"All You Zombies..."

Zombie process

- Process state reduced to exit code
- Waits around until parent calls wait()
 - Exit code copied to parent's memory
 - PCB deleted from kernel

Kernel process state

The dreaded "PCB"

(polychlorinated biphenol?)

Process Control Block

- "Everything without a user-visible memory address"
 - Kernel management information
 - Scheduler state
 - The "stuff"

Sample PCB contents

Pointer to CPU register save area

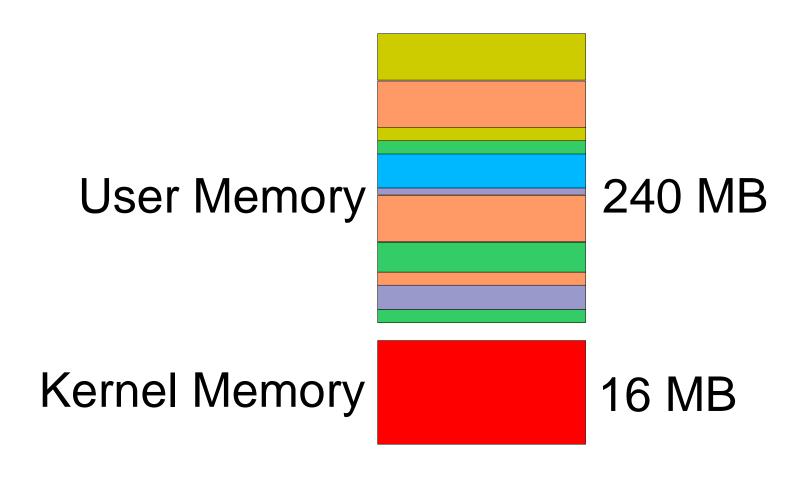
Process number, parent process number

Countdown timer value

Memory segment info

- User memory segment list
- Kernel stack reference

Scheduler info


• linked list slot, priority, "sleep channel"

15-410 Virtual Memory Layout

36

15-410 Physical Memory Layout

Ready to Implement All This?

Not so complicated...

- getpid()
- fork()
- exec()
- wait()
- exit()

What could possibly go wrong?

Summary

Parts of a Process

- Physical Memory pages, registers, I/O devices
- Virtual Memory regions, registers, I/O "ports"

Birth, School, Work, Death

"Big Picture" of system memory -both of them

(Numbers & arrangement are 15-410-specific)