
Solutions
15-410, Spring 2007 Homework Assignment 1.

1 Stack Madness (10 pts.)

This setup is halfway between a real stack and genuine heap-allocated frames. In some sense it suffers from
an ISA with too few registers, since it would be nice to have one register pointing to parameters in the calling
frame and another pointing to locals in the called frame. But having a “more real” setup would have made
the code more complicated.

1.1 Entry protocol (7pts)

.globl frametops

.globl framenum

###
"function entry protocol" (use only caller-save registers at first)
N.B. "There is more than one way to do it"
###

movl framenum, %eax # value of C’s framenum
movl frametops(,%eax,4), %eax # value of C’s frametops[framenum]
movl %esp, (%eax) # save caller’s %esp
movl %eax, %esp # assume new %esp, and...
pushl %ebp # ...save caller’s %ebp
movl %esp, %ebp # %ebp ready to address our locals
subl $1, framenum # your soln might have this earlier

depending on your interpretation

###
compiler or human inserts function body here
note clever omission of references to params
###

1.2 Exit protocol (2pts)

"function exit protocol" (don’t whack %eax)
addl $1, framenum
movl %ebp, %esp # point to caller’s %ebp
popl %ebp # restore caller’s %ebp
popl %edx # obtain caller’s %esp...
movl %edx, %esp # ...and assume it...

(I wonder what "popl %esp" does?)
ret # CALL saved ret addr on caller’s stack

1.3 Restrictions (1pt)

No function can have more than 4088 bytes of local variables and scratch space (4084 if the function calls
another).

2 Get to work! (10 pts.)

2.1 How to add preforking to thrgrps (9pts)

The basic idea is for thrgrp prepare() to pre-thr create() a bunch of threads which enqueue themselves
inside the threadgroup so that thrgrp create() can give the one at the head of the queue its func and arg

1

and start it running.
Probably the “approach of least typing” involves:

• To the thrgrp group t struct add a “prefork queue” analogous to the existing “zombie queue.” The
prefork queue will be protected by the same mutex currently covering the rest of the struct. Elements
of the queue will be the thrgrp tmp data t arm of the union, with the interesting fields (func and
arg) not yet filled in.

• Also add to the thrgrp group t struct a semaphore, initialized to zero, which tracks the number of
entries at the head of prefork queue which contain valid func and arg fields.

• The number of blank elements in the queue will be tracked by an int, pf nblank.

The system operates as follows:

• The thrgrp prepare() function locks the thrgrp, adds n “blank” prefork blobs to the tail of the prefork
queue, adds n to pf nblank, and unlocks the thrgrp. It then uses thr create() to launch n threads
running thrgrp prefork bottom(&eg) (that is, the threads receive a pointer to the threadgroup they
have been pre-forked into).

• The thrgrp prefork bottom() function wait()s on the semaphore, locks the thrgrp, removes the
prefork element at the head of the queue, and unlocks the thrgrp. Then it can invoke the existing
thrgrp bottom().

• Now thrgrp create() can operate as follows. First, lock the thrgrp mutex. If pf nblank is positive,
the prefork queue contains at least one not-filled-in element (and a corresponding thread either has
already slept on the semaphore or will “soon”). Fill in the first blank queue element, decrement
pf nblank, drop the mutex, and signal the semaphore. If pf nblank is less than one, there are no
blank prefork elements on the queue, so drop the thrgrp mutex and just spawn a thread the old way.

Note that this solution is less than optimal in the sense that the semaphore provides thread queueing but
does not in parallel queue the data the threads need to operate, so two queues exist when one could suffice.
Semaphores are like that.

2.2 A further extension? (1pt)

It is possible for thrgrp bottom() and thrgrp join() to cooperate so that logically-exiting worker threads
don’t actually exit but instead return themselves to the prefork queue. This would add noticeable com-
plexity, since one might wish to cap the size of the prefork queue and would regardless need to handle the
case of destroying a thread group which still contained invisible threads (so far we have assumed that a
call to thrgrp prepare() will be followed by an appropriate number of thrgrp create() calls, so that
thrgrp destroy group() could include a check that the prefork queue is empty instead of needing to deal
with cleaning up preforked threads).

3 Plumbers (4 pts.)

3.1 First state (2 pts)

This state is not safe.
Given the resources currently held by each plumber and the resources currently unallocated, no plumber

can assuredly run to completion. In particular, no hammers are available, which means that any plumber
requesting a hammer will sleep. But since each plumber’s pre-declared maximum usage includes one more
hammer than he or she currently holds, every plumber is allowed to make a sleep-inducing hammer request.
If they all do, a deadlock will result. Since there is no “progressor,” there can be no safe sequence, so the
state is unsafe.

Observe that the system is not deadlocked and would not necessarily enter a deadlock even if two of the
plumbers went to sleep. It is perfectly possible for two plumbers to request hammers and go to sleep but
for the third plumber (which would need to be Bob or Cameron) to finish the current job and relinquish all
tools.

2

3.2 Second state (2 pts)

This state is safe (even though no resources are currently free!) because Bob has all of his resources and can
complete his current job without sleeping. Bob’s current holdings are enough for Cameron to acquire a full
set of tools, complete a job, and release tools. Alice’s situation is interesting—on the one hand, she already
has a full set of tools and can complete her job without sleeping. On the other hand, her set of tools isn’t
enough to satisfy Cameron, and doesn’t help Bob, so her completion doesn’t help us find a safe sequence.

One safe sequence is “Bob, then Cameron, then Alice,” so the system is in a safe state (there are other
safe sequences, but we need only one to constructively prove safety).

3

