Advanced disk scheduling "Freeblock scheduling"

Eno Thereska

(slide contributions by Chris Lumb and Brandon Salmon)

PARALLEL DATA LABORATORY
Carnegie Mellon University

Why do I care?

- Windows Vista
 - background disk defragmenter
 - background backup

- Freeblock scheduling
 - one way to do the above (for free!)
 - minimal impact on foreground workloads

Outline

- Freeblock scheduling: some theory
- Freeblock scheduling: applied
- Implementation considerations
- Q & A

Some theory: preview

- Next few slides will review & show that:
 - disks are slow
 - mechanical delays (seek + rotational latencies)
 - there is nothing we can do during a seek
 - there is a lot we can do during a rotation
 - rotational latencies are very large
 - while rotation is happening go to nearby tracks and do useful work
 - "freeblock scheduling" = utilization of rotational latency gaps (+ any idle time)

Are disks slow?

- Are the xfer speeds that slow?
 - no, xfer speeds of 200MB/s are pretty good
- So what is slow?
 - workload often not sequential
 - disk head has to <u>move</u> from place to place
 - seek (~ 4ms) + rotation (~ 3ms)
- Effective bandwidth can be very low
 - $\sim 10-30MB/s$
 - even when SPTF is used

Surface organized into tracks

Tracks broken up into sectors

Disk head position

Rotation is counter-clockwise

About to read blue sector

After reading blue sector

After **BLUE** read

Red request scheduled next

After **BLUE** read

Seek to Red's track

Wait for Red sector to reach head

1

SEEK

ROTATE

Read Red sector

Scheduling algorithm Impact

Impact of Request Sizes

What can we do?

- Nothing we can do during a seek
 - disk head <u>has</u> to move to the right track
- Rotational latency is fully wasted
 - let's use this latency
- During a rotational latency
 - go to nearby tracks and do useful work
 - then, just-in-time, seek back to the original request

A quick glance ahead...

- What kind of "useful work" are we doing?
 - work that belongs to a "background" app
 - things like backup, defrag, virus scanning
- What do we really gain?
 - background apps don't interfere with fore. apps
 - background apps still complete
- What's in it for me?
 - can run defrag + virus scanner + backup in the background while working on your homework and you won't notice they are running

Rotational latency gap utilization

After **BLUE** read

Seek to Third track

SEEK

Free transfer

SEEK FREE TRANSFER

Seek to Red's track

SEEK

FREE TRANSFER

SEEK

Read Red sector

Final theory details

- Scheduler also uses disk idle time
 - high end servers have little idle time

 Idle time + rotational latency usage = "freeblock scheduling"

(it means we are getting things for free)

Steady background I/O progress

Applied freeblocks: preview

- Next few slides will show that:
 - we can build background apps
 - that do not interfere with foreground apps
 - that complete eventually
 - things like backup, defrag, virus scanners, etc
 - imagine the possibilities...

App 1: Backup

- Frequent backup improves data reliability and availability
 - companies take very frequent backups
 - a backup every 30 mins is not uncommon
- Our experiment:
 - disk used is 18GB
 - we want to back up 12GB of data
 - goal: back it up for free

Backup completed for free

App 2: Layout reorganization

- Layout reorganization improves access latencies
 - defragmentation is a type of reorganization
 - typical example of background activity
- Our experiment:
 - disk used is 18GB
 - we want to defrag up to 20% of it
 - goal: defrag for free

Disk Layout Reorganized for Free!

App 3: Cache write-backs

- Must flush dirty buffers
 - for space reclamation
 - for persistence (if memory is not NVRAM)
- Our experiment
 - PIII with 384MB of RAM
 - controlled experiments with synthetic workload
 - benchmarks (same as used before) in FreeBSD
 - syncer daemon wakes up every 1 sec and flushes entries that have been dirty > 30secs
 - goal: write back dirty buffers for free

10-20% improvement in overall perf.

Other maintenance applications

- Virus scanner
- LFS cleaner
- Disk scrubber
- Data mining
- Data migration

Summary I

- Disks are slow
 - but we can squeeze extra bw out of them
- Use freeblock scheduling to extract free bandwidth
- Utilize free bandwidth for background applications
 - they still complete <u>eventually</u>
 - with no impact on foreground workload

Implementation considerations: preview

- Next few slides will show that:
 - it's hard to do fine grained scheduling at the device driver
 - background apps need new interfaces to express their desires to the background scheduler
 - file consistency issues

Implementing freeblock scheduling

- Hard to do at the device driver
 - need to know the position of the disk head
 - however, we have done it!
 - it's more efficient inside the disk drive
 - try to convince your disk vendor to put it in
- Efficient algorithms
 - SPTF for foreground (0.5% of 1GHz PIII)
 - Freeblock scheduling for background (<<5% of 1GHz PIII)
 - Small memory utilization

Application programming interface (API) goals

- Work exposed but done opportunistically
 - all disk accesses are asynchronous
- Minimized memory-induced constraints
 - late binding of memory buffers
 - late locking of memory buffers
- "Block size" can be application-specific
- Support for speculative tasks
- Support for rate control

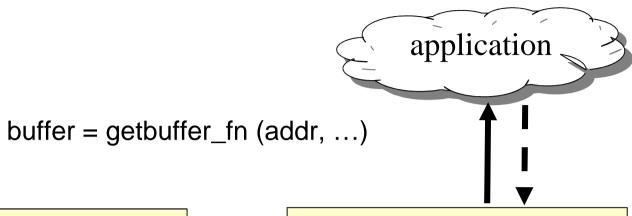
API description: task registration

fb_read (addr_range, blksize,...)

fb_write (addr_range, blksize,...)

API description: task completion

callback_fn (addr, buffer, flag, ...)



Carnegie Mellon Parallel Data Laboratory

40

API description: late locking of buffers

API description: aborting/promoting tasks

fb_abort (addr_range, ...)

fb_promote (addr_range, ...)

Complete API

Function Name	Arguments	Description
fb _ open	priority, callback_fn, getbuffer_fn	Open a freeblock session (ret: session <u>i</u> d)
fb_close	session_id	Close a freeblock session
fb _ read	session_id, addr_range, blksize, callback_param	Register a freeblock read task
fb_write	session_id, addr_range, blksize, callback_param	Register a freeblock write task (ret: task id)
fb_abort	session_id, addr_range	Abort parts of registered task
fb_promote	session_id, addr_range	Promote parts of registered task
fb_suspend	session_id	Suspend scheduling of a session's tasks
fb_resume	session_id	Resume scheduling of a session's tasks
*(callback_fn)	session_id, addr, buffer, flags, callback_param	Report that part of task completed
*(getbuffer_fn)	session_id, addr, callback_param	Get memory address for selected write

Designing disk maintenance applications

- APIs talk in terms of logical blocks (LBNs)
- Some applications need structured version
 - as presented by file system or database
- Example consistency issues
 - application wants to read file "foo"
 - registers task for inode's blocks
 - by time blocks read, file may not exist anymore!

Designing disk maintenance applications

- Application does not care about structure
 - scrubbing, data migration, array reconstruction
- Coordinate with file system/database
 - cache write-backs, LFS cleaner, index generation
- Utilize snapshots
 - backup, background fsck

Summary II

- Utilize free bandwidth for background applications
 - they still complete <u>eventually</u>
 - with no impact on foreground workload
- Scheduling is fine-grained
- Need new APIs

- See http://www.pdl.cmu.edu/Freeblock/
- Windows Vista!!!

 Talk to me if interested in summer internships or research with the PDL