15-410 "..." Windows NT is C2 Secure"..."

Security Overview Apr. 26, 2006

Dave Eckhardt
Bruce Maggs

- 1 - L36_Security 15-410, S'06

Synchronization

Reminder...

- Don't forget to read your partner's P3 code
 - Suggestion: read it, then meet with questions

P3 interview/feedback sessions

- Half hour
- Your reader will contact you to set up an appointment next week

- 2 - 15-410, S'06

Synchronization

Today

Chapter 15, more or less

Next time

Fun stuff not in the text

- 3 -

Overview

Goals & Threats

Technologies

Next Time

- Applications
- Systems

- 4 - 15-410, S'06

U.S. DoD "Orange Book" Security Classifications

- D try again
- C authentication, controlled sharing
- B per-object sensitivity labels, user clearances
- A B-class system with formal spec, proofs

Sub-levels

C2 = C1 + ACLs, audit logs, anti-tamper OS, ...

- 5 -

"Windows NT is C2 secure"

Windows NT is C2 secure
Wimpy old Unix is only C1
Use Windows, it's secure!

- 6 -

Windows NT is C2 secure

Windows NT is C2 secure

Wimpy old Unix is only C1

Use Windows, it's secure!

- Melissa, Code Red, SQL Slammer, SoBig, ...
- What's wrong with this picture?

"Security Architecture" undermined by implementation

Physical Security

- Locked rooms, disable floppy booting
- In practice, isolate from Internet!

- 7 -

Authentication

Threat: impersonation

Secrecy

Threats: theft, eavesdropping, cipher breaking, ...

Integrity

Threat: cracking

Signature

Threats: impersonation, repudiation

...

- 8 -

Authentication

Visitor/caller is Alice

Threat: Impersonation

- Act/appear/behave like Alice
- Steal Alice's keys (or "keys")
- Maybe you can read Alice's secrets
- Maybe you can send Alice to jail

- 9 -

Secrecy

Only Bob (or "Bob") can read Bob's data

Difficult secrecy threats

- Break a cipher (see below)
- Compromise a system (see below)
- Or...

Eavesdropping – get data while it's unprotected!

- Wireless keyboard
- Keystroke logger
- TEMPEST

- 10 -

TEMPEST

Code name for electromagnetic security standard

The criteria document is classified

Problem

- Computers are radios
- Especially analog monitors
 - ~150 MHz signal bandwidth ("dot clock")
 - Nice sharp sync pulses
- Surveillance van can read your screen from 100 feet

- 11 -

Integrity

- Only authorized personnel can add bugs to a system
- Or edit bank account balances
- Or edit high school grades

Threats

- Hijacking authorized accounts (impersonation)
- Bypassing authorization checks
 - Boot system in "administrator mode"?
 - Boot some other OS on the machine?
- Modifying hardware

- 12 -

Signature

"Pay Bob \$5 for his program" was uttered by Alice

Threats

- Alice repudiates message (after receiving program)
- Charlie signs "Pay Charlie \$500 for his program"
 - ... with Bob's signature

- 13 -

Anonymous communication

- "Whistle blowers"
- Secret agents

Threat

- "Traffic analysis"
 - Observe repeated "coincidence"
 - » Node 11 sends a message, Nodes 1-10 attack
 - Which node is a good target?

- 14 - 15-410, S'06

Availability

- Web server is available to corporate customers
- Mailbox contains interesting mail

Threat

- DoS Denial of Service
 - Flood server with bogus data
 - "Buries" important data
 - SYN flooding, connection resetting

- 15 - 15-410, S'06

Another DoS Attack

Automated Flight Data Processing System

- Transfers flight arrival/departure data
 - ...between radar tower in Elgin, IL (where's that?)
 - ...and tower at O'Hare International

Fallback system

paper, pencil, telephone

- 16 -

Another DoS Attack

Automated Flight Data Processing System

- Transfers flight arrival/departure data
 - ...between radar tower in Elgin, IL (where's that?)
 - ...and tower at O'Hare International

Fallback system

paper, pencil, telephone

Uh-oh...

- Chief engineer quit
 - after deleting sole copy of source code

- 17 -

Now What?

Police raided his house

Recovered code!

- Encrypted
 - Cracked after 6 months

Summary

- http://news.airwise.com/stories/99/10/940530321.html
- http://archives.californiaaviation.org/airport/msg02974.html

Lesson?

People matter...

- 18 -

Malicious Programs ("malware")

Trojan horse

Trapdoor

Buffer overflow

Virus/worm

- 19 -

Trojan, Trap Door

Trojan Horse

- Program with two purposes
- Advertised "Here is the new security update!"
- Actual Here is a hard-disk-wipe program!

Trap door

- login: anything
- Password: My hovercraft is full of eels!

#insert <reflections_on_trusting_trust>

- 20 -

Buffer overflow

- 21 - 15-410, S'06

Virus/Worm

Virus

- Program which cannot replicate itself
- Embedded in other programs, runs when they do
- Embeds self in other programs

Worm

- Breaks into remote machine
- Launches remote copy
- May not reside permanently on disk

- 22 - 15-410, S'06

Technologies

Scanning/intrusion detection/auditing

Hashing

Encryption (1-time, private, public)

The mysterious nonce

- 23 -

Scanning

Concept

- Check your system for vulnerabilities
 - Before somebody else does!

Details

- Password scan
- Scan for privileged programs, extra programs
- Check for dangerous file permissions
- Check that program, config files have correct contents
- Are mysterious programs running?

- 24 - 15-410, S'06

Intrusion Detection

Concept

- Monitor system in secure state
- Summarize typical behavior
- Watch for disturbing variation

Examples

- Sudden off-site traffic to/from a machine
- Change in system call mix
 - Gee, my web server doesn't usually exec("/bin/sh -i")...

Issues – false positive, false negative

- 25 - 15-410, S'06

Auditing

Concept

- Estimate damage
 - What was taken?
- How to fix system?

Approach

- Log system actions off-board
 - paper printer
 - disk with hardware roll-back

Boring but useful when you're in trouble...

- 26 - 15-410, S'06

Hashing

"One-way function"

- $h_1 = f(message_1)$
- Given h₁ "infeasible" to find message₁
 - Not so hard "parity sum" is one-way

Collision resistant

- Given h₁, "infeasible" to find message₂ also hashing to h₁
- "Infeasible" to find any two m₁, m₂ hashing to h_x

Use

- Here is the OpenBSD CD-ROM image
 - And here is the MD5 hash
- "Infeasible" to find/construct malware with that hash

Hashing Issues

Verify data?

Compute & check hash against hash of official version

Say, what is the "official version hash"?

- Preview of the key distribution problem
- Easy if you're in a room with the OpenBSD release coordinator
- Otherwise, not easy

- 28 - 15-410, S'06

Fate of Secure Hashes

Secure hash functions don't last very long

- Some are "found weak" several years after proposal
- NIST SHA (now known as SHA-0) withdrawn almost immediately

Status (Spring 2004)

- MD5 should be removed from service
- Code under development should use SHA-1

- 29 - 15-410, S'06

Fate of Secure Hashes

Status (Spring 2004)

- MD5 should be removed from service
- New projects should use SHA-1

Status (Cryto2004, August)

MD5 is "blown"

- 30 -

- Team of Chinese researchers has a method to find collisions
 » MD4, RIPEMD, HAVAL, MD5...uh-oh...
- SHA-1 is "on life support"
 - Collisions have been found in SHA-0
 - Collisions have been found in "reduced round" SHA-1
 - Collisions can be found in 2⁶⁹ attempts (<< 2⁸⁰)
- Verdict: "schedule SHA-1 for replacement" -- with ...?

Encryption

Concept

```
cipher = E(text, K<sub>1</sub>)
text = D(cipher, K<sub>2</sub>)
```

Algorithm E(),D()

- Should be public
 - Best known way to achieve strength

Keys

One (or maybe both) kept secret

- 31 -

"Random" Numbers

Three concepts

- Pseudo-random number generator (PRNG)
 - Next = (Previous*L+I) mod M
 - srand()/random()
 - Next "looks different" than Previous
 - Behaves the same way every time not random at all
- Kind-of-random stuff
 - srand(get_timer());
 - Ok for games (where money isn't involved)
- Entropy pool
 - Genuinely random bits

- 32 - 15-410, S'06

Entropy Pool

Goal (for security) is unguessability

aka unpredictability, true randomness, entropy

Why "kind-of" doesn't work

- Netscape seeded SSL session key generator with
 - getpid(), getppid(), time of day
 - Time is a globally-known value
 - Process IDs occupy a small space
 - » ...especially if you are on the target's machine!

Some things are genuinely random

- Which microsecond does the user press a key in?
- "Entropy Pool" is a queue of those events

- 33 -

Encryption: One-Time Pad

Key

Truly random byte string

Algorithm

- E(): XOR one key byte, one message byte
- D(): same process!
 - random XOR random = 0
 - msg XOR 0 = msg, so
 - (msg XOR random) XOR random = msg

- 34 - 15-410, S'06

One-Time Pad

Pad must be as long as message

Must be delivered securely

Never re-use pads!!

- (m1 XOR pad) XOR (m2 XOR pad) = (m1 XOR m2)
- Computationally very easy to see if a bit stream is text
 XOR'd with text

- 35 -

Private-Key Cryptography

Concept: symmetric cipher

```
cipher = E(text, Key)
text = E(cipher, Key)
```

Good

Fast, intuitive (password-like), small keys

Bad

Must share a key (privately!) before talking

Applications

Bank ATM links, secure telephones

- 36 -

Public-Key Cryptography

Concept: asymmetric cipher (aka "magic")

```
cipher = E(text, Key1)
text = D(cipher, Key2)
```

Keys are different

- Generate key pair
 - Two very large bit strings
 - » Related to each other mathematically
 - » Work together
- Publish "public key"
- Keep "private key" very secret

- 37 -

Public-Key Encryption

Sending secret mail

- Locate receiver's public key
- Encrypt mail with it
- Nobody can read it
 - Not even you!

Receiving secret mail

- Decrypt mail with your private key
 - No matter who sent it

- 38 -

Public-Key Signatures

Write a document

Encrypt it with your private key

Nobody else can do that

Transmit plaintext and ciphertext of document

Anybody can decrypt with your public key

- If they match, the sender knew your private key
 - ...sender was you, more or less

(really: send E(hash(msg), K_p))

- 39 - 15-410, S'06

Public Key Cryptography

Good

No need to privately exchange keys

Bad

- Algorithms are slower than private-key
- Must trust key directory

Applications

Secret mail, signatures

- 40 -

Comparison

Private-key algorithms

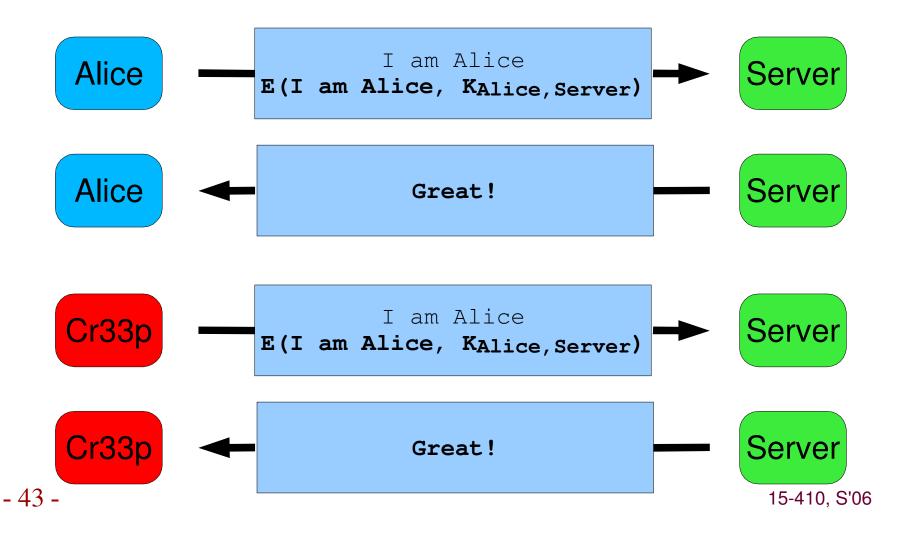
- Fast crypto, small keys
- Secret-key-distribution problem

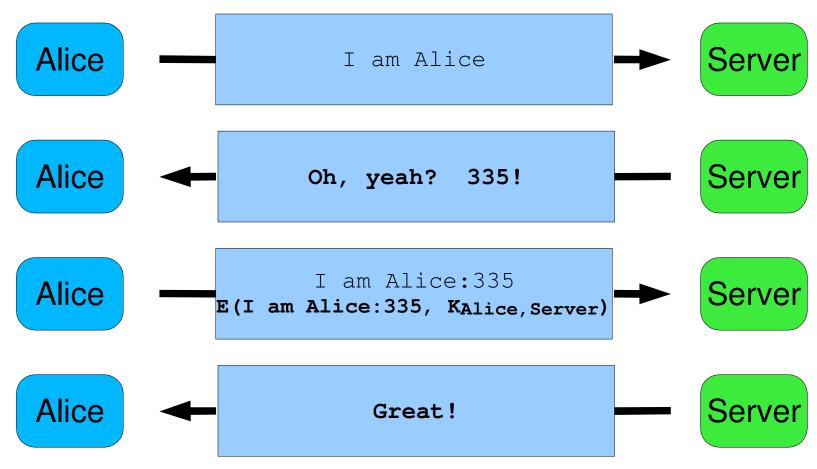
Public-key algorithms

- "Telephone directory" key distribution
- Slow crypto, keys too large to memorize

Can we get the best of both?

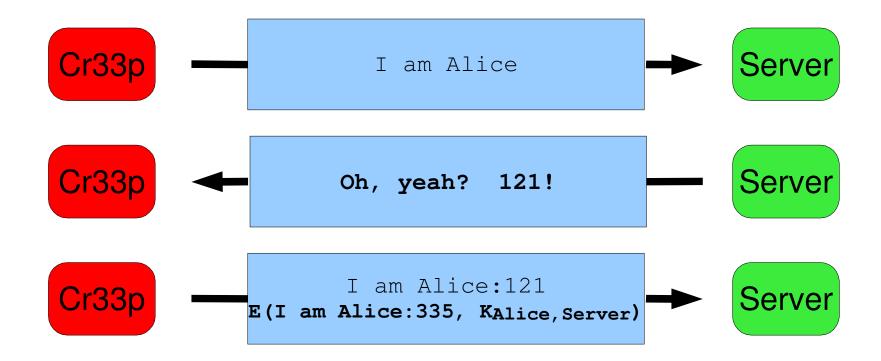
Next time!

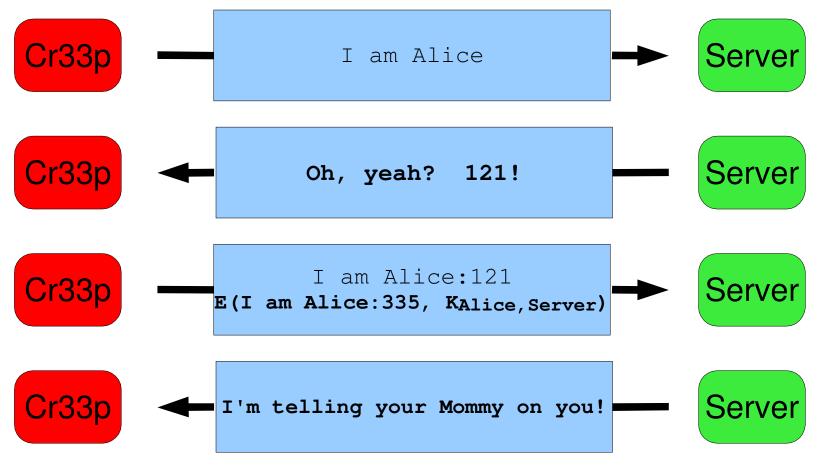

- 41 -


Secure Network Login

- 42 -

Secure Network Login – Uh-oh...




- 44 -

- 45 -

- 46 -

- 47 - 15-410, S'06

Summary

Many threats

Many techniques

"The devil is in the details"

Just because it "works" doesn't mean it's right!

Open algorithms, open source

- 48 -

Further Reading

Status of secure hash functions

MD5 is really dead (fast exploit code available)

http://www.schneier.com/blog/archives/2005/06/more_md5_collis.html http://www.schneier.com/blog/archives/2005/03/more_hash_funct.html http://cryptography.hyperlink.cz/md5/MD5_collisions.pdf

SHA-1 has been seriously wounded

http://www.schneier.com/blog/archives/2005/02/cryptanalysis_o.html http://www.schneier.com/blog/archives/2005/02/sha1_broken.html http://www.schneier.com/blog/archives/2005/08/new_cryptanalyt.html Xiaoyun Wang's page

» http://www.infosec.sdu.edu.cn/people/wangxiaoyun.htm

- 49 - 15-410, S'06

Further Reading

Soft Tempest: Hidden Data Transmission Using Electromagnetic Emanations

- Markus Kuhn, Ross Anderson
- http://www.cl.cam.ac.uk/~mgk25/ih98-tempest.pdf

Optical Time-Domain Eavesdropping Risks of CRT Displays

- Markus Kuhn
- http://www.cl.cam.ac.uk/~mgk25/emsec/optical-faq.html

Keyboard Acoustic Emanations Revisited

- Zhuang, Zhou, Tygar
- http://www.cs.berkeley.edu/~tygar/papers/Keyboard_Acoustic_Emanations_Revisited/ccs.pdf

- 50 -

Further Reading

Reflections on Trusting Trust

- Ken Thompson
- http://www.acm.org/classics/sep96

Netscape random-number oops

http://www.cs.berkeley.edu/~daw/netscape-randomness.html

Lava-lamp random numbers

http://www.LavaRnd.org/

How to destroy somebody who uses a hash table

http://www.cs.rice.edu/~scrosby/hash/CrosbyWallach_UsenixSec2003/

- 51 -