
Virtualization
15-410 Spring 2006

Mike Cui

Synchronization

• Kernel due tonight

• If you are using your late days, don’t forget
to register on the website

• Be alert for an opportunity to study large
warm floppy disks at midnight

2

Outline

• Overview

• Full Virtualization

• Virtualization on x86

• Paravirtualization

• Hardware Assisted Virtualization

• Software Implementation

3

Virtualization

Process of presenting and
partitioning computing resources in

a logical way rather than what is
dictated by their physical reality

Old topic

4

Virtual Machine

An execution environment identical to
a physical machine, each with the ability

to execute a full operating system

Q: Process : OS :: OS :
A: Virtualization layer

5

IBM System 370

VM/CMS ~1967

VM - Virtualization Layer

CMS - Single-user DOS-like operating system

1000 users, each user gets a personal mainframe!

6

Motivation

• Virtual machines are easier to manage

• Easier to move/store/copy

• Virtual machines allow computer resources
to be used more efficiently

• It’s convenient to run more than one OS
simultaneously

• Billion-dollar industry

7

Motivation for You

• Virtualization is cool

• Application of OS concepts you already
know from this class

• Impress VMware interviewer

8

Virtual Machine
Layers

The virtualization layer is
commonly referred to as

the Virtual Machine Monitor
(VMM) or Hypervisor

9

Virtualization Layer

• Runs with the highest privileges

• Controls and allocates hardware resources
for the virtual machine

• Occupies a small region of the virtual
address space

• It is the “operating system”

10

Protection

• VMM needs to be protected from the guest

• Guest kernel needs to be protected from
its users

• Need 3 privilege levels

• Luckily, on x86, we have 4

11

Protection

Guest Kernel

Guest User

CPL 3

CPL 1

CPL 0
Virtual Machine

Monitor

12

Full Virtualization

The VMM creates and illusion that each
guest operating system owns the

hardware exclusively and executes with
the highest privileges.

Process : OS :: OS : VMM

Challenge?

13

Guest OS

• CPL 0 code running at CPL 1

• Accesses physical memory

• Uses virtual memory

• Installs interrupt / system call handlers

• Does not know about the VMM

• Controls hardware devices

14

Trap and Emulate
Guest kernel runs at lower privilege level than VMM

When guest attempts to execute privileged
instruction, trap into the VMM, and emulate the

instruction.

Which instructions should be trapped?

(Which instructions should not be trapped?)

15

Disable Paging
Guest tries to write to %CR0

This instruction at CPL 1 causes #GP

VMM’s #GP handler decodes the faulting
instruction

#GP handler emulates the instruction (How?)

#GP handler returns execution to the next
instruction

16

Physical Memory
Protection

• Physical memory is a shared resource

• Do not allow guest to access it directly

• Instead, map virtual frames for the guest

• Hide real frames from the guest

• How?

17

Physical Memory
Virtualization

• Just like virtual memory, so use it!

• Always run guest with paging enabled

• When guest tries to disable it, don’t!

• When guest runs with paging disabled

• Point %CR3 to virtual frame mappings

• Trap accesses to %CR0 and %CR3

18

Virtual Memory
Virtualization

• Guest OS will need to use virtual memory

• Need 2 level virtual address translation

• Virtual page to virtual frame

• Virtual frame to real frame

• Another level of indirection?

• Implement in software

19

Virtual Virtual Memory

• Rewrite the guest’s page tables

• Trap writes to %CR3

• Walk through page tables and translate
virtual frames to real frames

• Problem?

20

Page Table Shadowing

• Instead, make a shadowed copy of the page
tables containing real frame addresses

• Processors sees the shadowed page tables

• Guest OS sees its own virtual page tables

• Trap reads from %CR3, so guest never finds
out about the shadowed page tables

• Problem?

21

Page Table Tracing

• Trap guest writes to its page tables

• Map guest page tables read only

• Update shadowed page tables whenever
guest page tables are modified

22

Guest sets up its page tables

Trap writes to %CR3

23

Guest sets up its page tables

Virtual Page Virtual Frame

Trap writes to %CR3

23

Guest sets up its page tables

Virtual Page Virtual Frame

CR3

Trap writes to %CR3

23

Guest sets up its page tables

Virtual Page Virtual Frame

CR3

Trap writes to %CR3

23

VMM makes shadowed page tables

24

VMM makes shadowed page tables

Guest Page Table
24

VMM makes shadowed page tables

Guest Page Table

Virtual Frame Real Frame

24

VMM makes shadowed page tables

Guest Page Table Shadowed Page Table

Virtual Frame Real Frame

24

VMM makes shadowed page tables

Guest Page Table Shadowed Page Table

Virtual CR3

Virtual Frame Real Frame

24

VMM makes shadowed page tables

Guest Page Table Shadowed Page Table

CR3Virtual CR3

Virtual Frame Real Frame

24

Shadowed page tables are hidden from the guest

CR3Virtual CR3

Trap reads from %CR3

25

Shadowed page tables are hidden from the guest

CR3Virtual CR3

EAX

Trap reads from %CR3

25

Shadowed page tables are hidden from the guest

CR3Virtual CR3

EAX

Trap reads from %CR3

25

Shadowed page tables are hidden from the guest

CR3Virtual CR3

EAX

Trap reads from %CR3

25

Guest gets a consistent view of the its page tables

Virtual CR3 CR3

Reads from virtual
page tables are allowed

26

Guest gets a consistent view of the its page tables

Virtual CR3 CR3

Reads from virtual
page tables are allowed

26

Guest gets a consistent view of the its page tables

Virtual CR3 CR3

Reads from virtual
page tables are allowed

26

VMM traces guest page table updates

Virtual CR3 CR3

Writes to guest page
tables are trapped

27

VMM traces guest page table updates

Virtual CR3 CR3

Writes to guest page
tables are trapped

27

VMM traces guest page table updates

Virtual CR3 CR3

Writes to guest page
tables are trapped

27

VMM traces guest page table updates

Virtual CR3 CR3

Writes to guest page
tables are trapped

27

VMM traces guest page table updates

Virtual CR3 CR3

Writes to guest page
tables are trapped

27

VMM traces guest page table updates

Virtual CR3 CR3

Writes to guest page
tables are trapped

27

VMM traces guest page table updates

Virtual CR3 CR3

Writes to guest page
tables are trapped

27

Shadowing

• Keep two copies of every protected state

• Shadowed copy, what the processor sees

• Virtual copy, what the guest sees

• Make sure guest sees only the virtual copy

• Do this for IDT, GDT, and control registers

• Cache shadowed objects for performance

28

Tracing

• Trace writes to virtual state by trapping

• Writes control registers trap
automatically

• Use memory protection to trap writes to
memory

• Problem?

• Update shadowed state in trap handler

29

Protecting the VMM

• VMM lives in the same virtual address
space as guest

• Guest does not know about the VMM

• Guest may need to use the same address
space

• VMM lives in the shadow

• Guest access to VMM space are emulated

30

Project 4 Option

• Write a trap-and-emulate VMM

• Be able to run two instances of your P3
kernel inside VMs

• We will provide an x86 instruction decoder

31

Just Kidding!

32

x86 Hardware

• x86 ISA is not “virtualizable”

• 17 privileged instructions behave differently
in non-privileged mode

• Doesn’t trap when you want it to

• Doesn’t do the right thing if you don’t
want it to trap

• e.g. POPF just ignores the IF flag

33

Virtualization on x86

• Possible, through a lot of clever hacks

• VMware (1998)

• Dynamically rewrites guest kernel
instructions to properly trap into VMM

• Directly execute guest user code

• Only 20% performance overhead, or less

34

Paravirtualization
Motivation

• Full virtualization is expensive and
complicated

• If guest OS can be modified to work with
the hypervisor, then it’s unnecessary to

• Trap and emulate

• Shadow and trace

• Dynamically recompile guest kernel code

35

Paravirtualization
Implementation

Guest OSes are modified to accept the
fact it is running inside a VM.

The VMM does not create an illusion that
the VM owns all machine resources.

Instead, the VMM provides an hypercall
interface to provide service to VMs.

36

Hypercall Interface

• Allows the guest to voluntarily trap into the
hypervisor

• All guest access to hardware state happens
through hypercalls

• The guest does not access hardware state
directly at all

• No instruction decoding necessary

37

Physical Memory

• Guest knows that it does not own all of
physical memory

• Guest requests physical memory from
hypervisor

• There is no distinction between virtual
frame address and real frame address

38

Virtual Memory

• Guest relinquishes ownership of its own
page tables

• All paging operations happen through
hypercalls

• mmu_update() - batch update

• update_va_mapping() - update one entry

• No shadows or traces

39

Hardware Abstraction

Paravirtualization = Hardware abstraction

The hypervisor abstracts away all the hardware
details from the guest operating system

Therefore, it’s only natural that you should
have more than one guest operating system

40

Hypervisor Examples

• Xen - portable hypervisor

• Hypercall interface defined for any ISA

• mmu_update()

• VMware - x86 specific

• Hypercall interface similar to hardware

• VMI_SetCR3()

41

Hardware Assisted
Virtualization

• Intel VT (Vanderpool) - Core Duo/Solo

• AMD SVM (Pacifica) - soon to come

• Provides a hardware mode of operation for
virtual machines

• Architectural extension to make x86
virtualization easier

• Does not replace the VMM

42

Modes of Operations

• Root and non-root mode, orthogonal to
privilege levels

• Root mode - VMM, or regular OS

• Full access, normal operation

• Non-root mode - Guest

• Less “privileged” than root mode, allows
trapping into root mode

43

Modes of Operations

Guest OS
Guest
User

VMM /
Host OS

Host
User

CPL

0 1 2 3

Root

Non-
root

44

Guest OS in its
Own World

• Guest lives in its own address space

• Does not conflict with VMM

• Guest kernel runs at CPL 0

• No unnecessary traps

• Can have its own interrupt handlers

• Those 17 instructions do the right things

45

Mode Switching

• Unconditional traps to root mode

• VM extension instructions

• Read from %CR3

• Conditional traps, defined by VMM

• Write to control registers

• Certain interrupts/exceptions

46

Control Register
Shadowing

• In non-root mode, control registers are
shadowed by the processor

• VMM defines bit mask for shadowed bits,
and a bit mask of virtual values

• Instructions that reads control registers
return virtual values

47

Control Register
Tracing

• Not all writes trap, VMM defines which

• For example, VMM can specify a list of up
to four legal %CR3 values

• Legal writes execute directly

• Illegal writes trap

• (Why is this useful?)

48

Virtual Memory
Virtualization

• No hardware support (yet)

• VMM is still responsible for shadowing/
tracing page tables

• Explains why read from %CR3
unconditionally traps

49

Virtualization Software

• VMM can’t really be an operating system

• It has to be small so it can’t have device
drivers, filesystem, and network stack

• Users want to have virtual machines on top
of existing operating systems

• But the VMM needs to take control of
the hardware when it runs

X

As a User Application

• User mode part

• User interface

• Provides device emulation services

• Allocate host resource to VMs

• Kernel mode part

• Driver to load VMM and kick host out

X

VMware Workstation

Host
VMs• VMX - user app

• VMMON - kernel driver

• One VMM per virtual
processor

• Host schedules VMX

• VMX schedules VMM

• VMM host-independent

X

Device Emulation

• VMM traps guest access to virtual devices

• VMM sets up a device service request, and
then switches the host OS

• Host OS returns to VMX

• VMX serves the device request, possibly
making host OS system calls

• 4 context switches

X

Device Emulation
Optimization

• Avoid context switching

• Queue up device emulation requests

• Switch to back to host only when
absolutely necessary, e.g. timer

• Do not context switch at all

• Make host cooperate

X

“Bare-Metal”
Virtualization

• VMware ESX Server

• Custom host kernel that allows the VMM
to call into it directly

• Fancy scheduler optimized for VMs

• Special file system optimized for VM disk
images

• As little as 5% performance overhead!

X

Summary

• Full Virtualization

• Trap and emulate, shadow and trace

• Paravirtualization

• Voluntary trap, hardware abstration

• Hardware Assisted Virtualization

• Virtualization on a Host OS

50

Further Reading

• J.S. Robin, and C.E. Irvine, “Analysis of the Intel Pentium’s Ability to Support a
Secure Virtual Machine Monitor”

• M. Rosenblum, and T. Garfinkel, “Virtual Machine Monitors: Current
Technology and Future Trends"

• S. Devine, E. Bugnion, and M. Rosenblum, “Virtualization system including a
virtual machine monitor for a computer with a segmented architecture”, US
Patent 6,397,242

• P. Barham, et. al., “Xen and the Art of Virtualization”
• “Xen Developer’s Reference”
• “VMI Specification” from VMware
• R. Uhlig, et. al., “Intel Virtualization Technology”
• “Intel VT Specification”
• M. Rosenblum, et. al., “Optimizing the Migration of Virtual Computers”

51

